Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106104    DOI: 10.1088/1674-1056/ac5887
Special Issue: SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University Prev   Next  

Pressure-induced phase transition in transition metal trifluorides

Peng Liu(刘鹏)1,†, Meiling Xu(徐美玲)2,†, Jian Lv(吕健)1, Pengyue Gao(高朋越)1, Chengxi Huang(黄呈熙)3, Yinwei Li(李印威)2, Jianyun Wang(王建云)1,‡, Yanchao Wang(王彦超)1, and Mi Zhou(周密)1,§
1. State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China;
2. Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
3. MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF3, from R—3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF6 octahedra and formation of TiF8 square antiprismatic units. The Pnma phase of TiF3, formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF3, VF3, CrF3, and MnF3, offering valuable insights into the high-pressure phases of transition metal trifluorides.
Keywords:  high-pressure structure transition      crystal structure prediction      high-pressure x-ray diffraction experiments      transition metal  
Received:  24 January 2022      Revised:  15 February 2022      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  64.70.K-  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134).
Corresponding Authors:  Jianyun Wang, Mi Zhou     E-mail:  wangjianyun@jlu.edu.cn;mzhou@jlu.edu.cn

Cite this article: 

Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密) Pressure-induced phase transition in transition metal trifluorides 2022 Chin. Phys. B 31 106104

[1] Corrales-Salazar A, Brierley R T, Littlewood P B and Guzmán-Verri G G 2017 Phys. Rev. Mater. 1 053601
[2] HandunkandaS U, Curry E B, Voronov V and Hancock J N 2019 J. Phys.: Condens. Matter 32 035403
[3] Han F, Chen J, Hu L, Ren Y, Rong Y, Pan Z, Deng J and Xing X 2016 J. Am. Ceram. Soc. 99 2886
[4] Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y and Guo Z X 2014 Phys. Lett. A 378 2906
[5] Arai H, Okada S, Sakurai Y and Yamaki J 1997 J. Power Sources 68 716
[6] Nishijima M, Gocheva I D, Okada S, Doi T, Yamaki J and Nishida T 2009 J. Power Sources 190 558
[7] Wang J, Li F, Yang B, Liu X and Zhao M 2017 J. Mater. Chem. A 5 21486
[8] Wang P, Kang X D and Cheng H M 2005 Appl. Phys. Lett. 87 071911
[9] Wang P, Kang X D and Cheng H M 2005 ChemPhysChem 6 2488
[10] Hou X, Hu R, Zhang T, Kou H, Li J and Xue X 2013 Int. J. Hydrog. Energy 38 12904
[11] Guo Y H, Yu X B, Gao L, Xia G L, Guo Z P and Liu H K 2010 Energy Environ. Sci. 3 465
[12] Li Y, Zhang Y and Chen L 2021 Front. Chem. 9 693302
[13] Mondal P, Opalka D, Poluyanov L V and Domcke W 2012 J. Chem. Phys. 136 084308
[14] Perebeinos V and Vogt T 2004 Phys. Rev. B 69 115102
[15] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496
[16] Siegel S 1956 Acta Crystallogr. 9 684
[17] Daniel P, Bulou A, Leblanc M, Rousseau M and Nouet J 1990 Mater. Res. Bull. 25 413
[18] Hepworth M A, Jack K H, Peacock R D and Westland G J 1957 Acta Crystallogr. 10 63
[19] Hepworth M A and Jack K H 1957 Acta Crystallogr. 10 345
[20] Kennedy B J and Vogt T 2002 Mater. Res. Bull. 37 77
[21] Jiang S, Fang Y, Li R, Xiao H, Crowley J, Wang C, WhiteT J, Goddard III W A, Wang Z, Baikie T and Fang J 2016 Angew. Chem. Int. Ed. 128 6650
[22] Li Q, Zhang L, Chen Z and Quan Z 2019 J. Mater. Chem. A 7 16089
[23] Szafranski M and Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458
[24] Zhang R, Cai W, Bi T, Zarifi N, Terpstra T, Zhang C, Verdeny Z V, Zurek E and Deemyad S 2017 J. Phys. Chem. Lett. 8 3457
[25] Wang Y, LüX, Yang W, Wen T, Yang L, Ren X, WangL, Lin Z and Zhao Y 2015 J. Am. Chem. Soc. 137 11144
[26] Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, WeiS H, Xu T and Mao H K 2016 Proc. Natl. Acad. Sci. USA 113 8910
[27] Guennou M, Bouvier P, Toulemonde P, Darie C, Goujon C, Bordet P, Hanfland M and Kreisel J 2014 Phys. Rev. Lett. 112 075501
[28] Lee J H, Jaffe A, Lin Y, Karunadasa H I and Neaton J B 2020 ACS Energy Lett. 5 2174
[29] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[30] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[31] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[32] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, BaldiniM, Meng Y, Struzhkin V V and Hemley R J 2019 Rev. Lett. 122 027001
[33] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373
[34] Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303
[35] Jiang S Q, Yang X, Huang X L, Huang Y P, Li X and Cui T 2020 Chin. Phys. Lett. 37 016102
[36] Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204
[37] Wang W D, Li A, Xu G H, Wang P, Liu Y G and Wang L P 2020 Chin. Phys. Lett. 37 058101
[38] Wang J, Zhou Q, Guo S, Huang Y, Huang X, Wang L, Li F and Cui T 2020 Chin. Phys. Lett. 37 066201
[39] Lei L, Tang Q Q, Zhang F, Liu S, Wu B B and Zhou C Y 2020 Chin. Phys. Lett. 37 068101
[40] Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J and Zhao Z 2020 Chin. Phys. Lett. 37 107401
[41] Sowa H and Ahsbahs H 1998 Acta Crystallogr., Sect. B:Struct. Sci. 54 578
[42] Jørgensen J E, Marshall W G and Smith R I 2004 Acta Crystallogr. Sect. B: Struct. Sci. 60 669
[43] Zhu F, Lai X, Wu X, Li Y and Qin S 2014 Acta Crystallogr. Sect. B: Struct. Sci. 70 801
[44] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[45] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[46] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[47] Zhang J, Lv J, Li H, Feng X, Lu C, Redfern S A, Liu H, Chen C and Ma Y 2018 Phys. Rev. Lett. 121 255703
[48] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[49] Xu M, Zhan G, Liu S, Zhang D, Zhong X, Qu Z, Li Y, Du A, Zhang H and Wang Y 2019 Phys. Rev. B 100 235435
[50] Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E and Wang Y 2020 Phys. Rev. Lett. 124 067602
[51] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 Chin. Phys. B 21 076103
[52] Zhang G T, Bai T T, Zhao Y R and Lu C 2013 Chin. Phys. B 22 116104
[53] Chu B H, Zhao Y and Wang D H 2021 Chin. Phys. B 30 046101
[54] Guo Y L, Wei J H, Liu X, Ke X Z and Jiao Z Y 2021 Chin. Phys. B 30 016101
[55] Shi X H, Liu B, Yao Z and Liu B B 2020 Chin. Phys. Lett. 37 047101
[56] Lv R Y, Yang X G, Yang D W, Niu C Y and Zhao C X 2021 Chin. Phys. Lett. 38 076101
[57] Liu Y X, Wang C, Han S, Chen X, Sun H R and Liu X B 2021 Chin. Phys. Lett. 38 036201
[58] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[59] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[60] Blöchl P E 1994 Phys. Rev. B 50 17953
[61] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[62] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[63] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[64] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
[65] Larson A C and Von Dreele R B 2000 General StructureAnalysis System (GSAS), Los Alamos National Laboratory Report LAUR 86—748
[66] Toby B H 2001 J Appl. Crystallogr. 34 210
[67] Li M, Gao C X, Ma Y Z, He C Y, Hao A M, Zhang D M, Li Y C, Liu J and Jun W D 2007 Chin. Phys. Lett. 24 1010
[68] Jack K H and Gutmann V 1951 Acta Crystallogr. 4 246
[69] Zalkin A and Templeton D H 1953 J. Am. Chem. Soc. 75 2453
[70] Hemley R J 1998 Ultrahigh Pressure Mineralogy-Physics and Chemistry of the Earth's Deep Interior (Washington, DC: Mineralogical Society of America) chapter 9, p. 283
[71] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[72] Chen X and Ma Y 2012 Europhys. Lett. 100 26005
[73] Luong D H, Phan T L, Ghimire G, Duong D L and Lee Y H 2019 APL Mater. 7 081102
[1] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[2] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[3] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[4] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[5] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[6] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[7] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[8] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[9] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[10] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[11] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[12] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[13] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[14] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[15] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
No Suggested Reading articles found!