Special Issue:
SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
|
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University |
Prev
Next
|
|
|
Pressure-induced phase transition in transition metal trifluorides |
Peng Liu(刘鹏)1,†, Meiling Xu(徐美玲)2,†, Jian Lv(吕健)1, Pengyue Gao(高朋越)1, Chengxi Huang(黄呈熙)3, Yinwei Li(李印威)2, Jianyun Wang(王建云)1,‡, Yanchao Wang(王彦超)1, and Mi Zhou(周密)1,§ |
1. State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China; 2. Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; 3. MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF3, from R—3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF6 octahedra and formation of TiF8 square antiprismatic units. The Pnma phase of TiF3, formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF3, VF3, CrF3, and MnF3, offering valuable insights into the high-pressure phases of transition metal trifluorides.
|
Received: 24 January 2022
Revised: 15 February 2022
Accepted manuscript online:
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
64.70.K-
|
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134). |
Corresponding Authors:
Jianyun Wang, Mi Zhou
E-mail: wangjianyun@jlu.edu.cn;mzhou@jlu.edu.cn
|
Cite this article:
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密) Pressure-induced phase transition in transition metal trifluorides 2022 Chin. Phys. B 31 106104
|
[1] Corrales-Salazar A, Brierley R T, Littlewood P B and Guzmán-Verri G G 2017 Phys. Rev. Mater. 1 053601 [2] HandunkandaS U, Curry E B, Voronov V and Hancock J N 2019 J. Phys.: Condens. Matter 32 035403 [3] Han F, Chen J, Hu L, Ren Y, Rong Y, Pan Z, Deng J and Xing X 2016 J. Am. Ceram. Soc. 99 2886 [4] Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y and Guo Z X 2014 Phys. Lett. A 378 2906 [5] Arai H, Okada S, Sakurai Y and Yamaki J 1997 J. Power Sources 68 716 [6] Nishijima M, Gocheva I D, Okada S, Doi T, Yamaki J and Nishida T 2009 J. Power Sources 190 558 [7] Wang J, Li F, Yang B, Liu X and Zhao M 2017 J. Mater. Chem. A 5 21486 [8] Wang P, Kang X D and Cheng H M 2005 Appl. Phys. Lett. 87 071911 [9] Wang P, Kang X D and Cheng H M 2005 ChemPhysChem 6 2488 [10] Hou X, Hu R, Zhang T, Kou H, Li J and Xue X 2013 Int. J. Hydrog. Energy 38 12904 [11] Guo Y H, Yu X B, Gao L, Xia G L, Guo Z P and Liu H K 2010 Energy Environ. Sci. 3 465 [12] Li Y, Zhang Y and Chen L 2021 Front. Chem. 9 693302 [13] Mondal P, Opalka D, Poluyanov L V and Domcke W 2012 J. Chem. Phys. 136 084308 [14] Perebeinos V and Vogt T 2004 Phys. Rev. B 69 115102 [15] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496 [16] Siegel S 1956 Acta Crystallogr. 9 684 [17] Daniel P, Bulou A, Leblanc M, Rousseau M and Nouet J 1990 Mater. Res. Bull. 25 413 [18] Hepworth M A, Jack K H, Peacock R D and Westland G J 1957 Acta Crystallogr. 10 63 [19] Hepworth M A and Jack K H 1957 Acta Crystallogr. 10 345 [20] Kennedy B J and Vogt T 2002 Mater. Res. Bull. 37 77 [21] Jiang S, Fang Y, Li R, Xiao H, Crowley J, Wang C, WhiteT J, Goddard III W A, Wang Z, Baikie T and Fang J 2016 Angew. Chem. Int. Ed. 128 6650 [22] Li Q, Zhang L, Chen Z and Quan Z 2019 J. Mater. Chem. A 7 16089 [23] Szafranski M and Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458 [24] Zhang R, Cai W, Bi T, Zarifi N, Terpstra T, Zhang C, Verdeny Z V, Zurek E and Deemyad S 2017 J. Phys. Chem. Lett. 8 3457 [25] Wang Y, LüX, Yang W, Wen T, Yang L, Ren X, WangL, Lin Z and Zhao Y 2015 J. Am. Chem. Soc. 137 11144 [26] Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, WeiS H, Xu T and Mao H K 2016 Proc. Natl. Acad. Sci. USA 113 8910 [27] Guennou M, Bouvier P, Toulemonde P, Darie C, Goujon C, Bordet P, Hanfland M and Kreisel J 2014 Phys. Rev. Lett. 112 075501 [28] Lee J H, Jaffe A, Lin Y, Karunadasa H I and Neaton J B 2020 ACS Energy Lett. 5 2174 [29] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [30] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [31] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [32] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, BaldiniM, Meng Y, Struzhkin V V and Hemley R J 2019 Rev. Lett. 122 027001 [33] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373 [34] Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303 [35] Jiang S Q, Yang X, Huang X L, Huang Y P, Li X and Cui T 2020 Chin. Phys. Lett. 37 016102 [36] Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204 [37] Wang W D, Li A, Xu G H, Wang P, Liu Y G and Wang L P 2020 Chin. Phys. Lett. 37 058101 [38] Wang J, Zhou Q, Guo S, Huang Y, Huang X, Wang L, Li F and Cui T 2020 Chin. Phys. Lett. 37 066201 [39] Lei L, Tang Q Q, Zhang F, Liu S, Wu B B and Zhou C Y 2020 Chin. Phys. Lett. 37 068101 [40] Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J and Zhao Z 2020 Chin. Phys. Lett. 37 107401 [41] Sowa H and Ahsbahs H 1998 Acta Crystallogr., Sect. B:Struct. Sci. 54 578 [42] Jørgensen J E, Marshall W G and Smith R I 2004 Acta Crystallogr. Sect. B: Struct. Sci. 60 669 [43] Zhu F, Lai X, Wu X, Li Y and Qin S 2014 Acta Crystallogr. Sect. B: Struct. Sci. 70 801 [44] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [45] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [46] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301 [47] Zhang J, Lv J, Li H, Feng X, Lu C, Redfern S A, Liu H, Chen C and Ma Y 2018 Phys. Rev. Lett. 121 255703 [48] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001 [49] Xu M, Zhan G, Liu S, Zhang D, Zhong X, Qu Z, Li Y, Du A, Zhang H and Wang Y 2019 Phys. Rev. B 100 235435 [50] Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E and Wang Y 2020 Phys. Rev. Lett. 124 067602 [51] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 Chin. Phys. B 21 076103 [52] Zhang G T, Bai T T, Zhao Y R and Lu C 2013 Chin. Phys. B 22 116104 [53] Chu B H, Zhao Y and Wang D H 2021 Chin. Phys. B 30 046101 [54] Guo Y L, Wei J H, Liu X, Ke X Z and Jiao Z Y 2021 Chin. Phys. B 30 016101 [55] Shi X H, Liu B, Yao Z and Liu B B 2020 Chin. Phys. Lett. 37 047101 [56] Lv R Y, Yang X G, Yang D W, Niu C Y and Zhao C X 2021 Chin. Phys. Lett. 38 076101 [57] Liu Y X, Wang C, Han S, Chen X, Sun H R and Liu X B 2021 Chin. Phys. Lett. 38 036201 [58] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [59] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [60] Blöchl P E 1994 Phys. Rev. B 50 17953 [61] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [62] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [63] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [64] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276 [65] Larson A C and Von Dreele R B 2000 General StructureAnalysis System (GSAS), Los Alamos National Laboratory Report LAUR 86—748 [66] Toby B H 2001 J Appl. Crystallogr. 34 210 [67] Li M, Gao C X, Ma Y Z, He C Y, Hao A M, Zhang D M, Li Y C, Liu J and Jun W D 2007 Chin. Phys. Lett. 24 1010 [68] Jack K H and Gutmann V 1951 Acta Crystallogr. 4 246 [69] Zalkin A and Templeton D H 1953 J. Am. Chem. Soc. 75 2453 [70] Hemley R J 1998 Ultrahigh Pressure Mineralogy-Physics and Chemistry of the Earth's Deep Interior (Washington, DC: Mineralogical Society of America) chapter 9, p. 283 [71] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 [72] Chen X and Ma Y 2012 Europhys. Lett. 100 26005 [73] Luong D H, Phan T L, Ghimire G, Duong D L and Lee Y H 2019 APL Mater. 7 081102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|