CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study |
Dan Wang(王丹)1,2, Xuan Wang(王瑄)1,3,†, Guoqian Liao(廖国前)1, Zhe Zhang(张喆)1,3,4, and Yutong Li(李玉同)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract To integrate a terahertz pump into an ultrafast electron diffraction (UED) experiment has attracted much attention due to its potential to initiate and detect the structural dynamics both directly. However, the deflection of the electron probe by the electromagnetic field of the terahertz pump alters the incident angle of the electron probe on the sample, impeding it from recording structural information afterwards. In this article, we studied this issue by a theoretical simulation of the terahertz-induced deflection effect on the electron probe, and came up with several possible schemes to reduce such effect. As a result, a terahertz-pump-electron-probe UED experiment with a temporal resolution comparable to the terahertz period is realized. We also found that MeV UED was more suitable for such terahertz pump experiment.
|
Received: 13 October 2021
Revised: 06 December 2021
Accepted manuscript online:
|
PACS:
|
61.05.J-
|
(Electron diffraction and scattering)
|
|
63.90.+t
|
(Other topics in lattice dynamics)
|
|
41.90.+e
|
(Other topics in electromagnetism; electron and ion optics)
|
|
06.60.Jn
|
(High-speed techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11774409,11827807,and 92050106).This work is supported by the Synergic Extreme Condition User Facility. |
Corresponding Authors:
Xuan Wang,E-mail:xw@iphy.ac.cn
E-mail: xw@iphy.ac.cn
|
About author: 2021-12-11 |
Cite this article:
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同) How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study 2022 Chin. Phys. B 31 056103
|
[1] Fattinger C and Grischkowsky D 1989 Appl. Phys. Lett. 54 490 [2] Bass M, Franken P A, Ward J F and Weinreich G 1962 Phys. Rev. Lett. 9 446 [3] Yang K H, Richards P L and Shen Y R 1971 Appl. Phys. Lett. 19 320 [4] Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, Wang X, Ruan C J and Li Y T 2018 Opt. Express 26 7107 [5] Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S and Lindenberg A M 2011 Appl. Phys. Lett. 99 141117 [6] Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H and Lindenberg A 2013 Rev. Sci. Instrum. 84 022701 [7] D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A and Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002 [8] Oh T I, Yoo Y J, You Y S and Kim K Y 2014 Appl. Phys. Lett. 105 041103 [9] Gopal A, Singh P, Herzer S, Reinhard A, Schmidt A, Dillner U, May T, Meyer H G, Ziegler W and Paulus G G 2013 Opt. Lett. 38 4705 [10] Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z and Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994 [11] Misra M, Kotani K, Kawayama I, Murakami H and Tonouchi M 2005 Appl. Phys. Lett. 87 182909 [12] Pupeza I, Huber M, Trubetskov M, Schweinberger W, Hussain S A, Hofer C, Fritsch K, Poetzlberger M, Vamos L, Fill E, Amotchkina T, Kepesidis K V, Apolonski A, Karpowicz N, Pervak V, Pronin O, Fleischmann F, Azzeer A, Zigman M and Krausz F 2020 Nature 577 52 [13] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345 [14] Gray A X, Hoffmann M C, Jeong J, Aetukuri N P, Zhu D, Hwang H Y, Brandt N C, Wen H, Sternbach A J, Bonetti S, Reid A H, Kukreja R, Graves C, Wang T, Granitzka P, Chen Z, Higley D J, Chase T, Jal E, Abreu E, Liu M K, Weng T C, Sokaras D, Nordlund D, Chollet M, Alonso-Mori R, Lemke H, Glownia J M, Trigo M, Zhu Y, Ohldag H, Freeland J W, Samant M G, Berakdar J, Averitt R D, Nelson K A, Parkin S S P and Dürr H A 2018 Phys. Rev. B 98 045104 [15] Zewail A H and Thomas J M 2009 4$D Electron Microscopy: imaging in space and time (World Scientifc Publishing Co. Pte. Ltd) [16] Zhu C, Niu X, Fu Y, Li N, Hu C, Chen Y, He X, Na G, Liu P, Zai H, Ge Y, Lu Y, Ke X, Bai Y, Yang S, Chen P, Li Y, Sui M, Zhang L, Zhou H and Chen Q 2019 Nat. Commun. 10 815 [17] Kozina M, Fechner M, Marsik P, van Driel T, Glownia J M, Bernhard C, Radovic M, Zhu D, Bonetti S, Staub U and Hoffmann M C 2019 Nat. Phys. 15 387 [18] Sie E J, Nyby C M, Pemmaraju C D, Park S J, Shen X Z, Yang J, Hoffmann M C, Ofori-Okai B K, Li R K, Reid A H, Weathersby S, Mannebach E, Finney N, Rhodes D, Chenet D, Antony A, Balicas L, Hone J, Devereaux T P, Heinz T F, Wang X J and Lindenberg A M 2019 Nature 565 61 [19] Huang W R, Nanni E A, Ravi K, Hong K H, Fallahi A, Wong L J, Keathley P D, Zapata L E, Kartner F X 2015 Sci. Rep. 5 14899 [20] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Miller R J and Kartner F X 2015 Nat. Commun. 6 8486 [21] Walsh D A, Lake D S, Snedden E W, Cliffe M J, Graham D M and Jamison S P 2017 Nat. Commun. 8 421 [22] Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H and Kartner F X 2018 Nat. Photon. 12 336 [23] Curry E, Fabbri S, Maxson J, Musumeci P and Gover A 2018 Phys. Rev. Lett. 120 094801 [24] Zhang D, Fallahi A, Hemmer M, Ye H, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H and Kärtner F X 2019 Optica 6 872 [25] Hibberd M T, Healy A L, Lake D S, Georgiadis V, Smith E J H, Finlay O J, Pacey T H, Jones J K, Saveliev Y, Walsh D A, Snedden E W, Appleby R B, Burt G, Graham D M and Jamison S P 2020 Nat. Photon. 14 755 [26] Zhang D, Fakhari M, Cankaya H, Calendron A L, Matlis N H and Kärtner F X 2020 Phys. Rev. X 10 011067 [27] Tang H, Zhao L, Zhu P, Zou X, Qi J, Cheng Y, Qiu J, Hu X, Song W, Xiang D and Zhang J 2021 Phys. Rev. Lett. 127 074801 [28] Xu H, Yan L, Du Y, Huang W, Tian Q, Li R, Liang Y, Gu S, Shi J and Tang C 2021 Nat. Photon. 15 426 [29] Li S and Jones R R 2016 Nat. Commun. 7 13405 [30] Kealhofer C, Schneider W, Ehberger D, Ryabov A, Krausz F and Baum P 2016 Science 352 429 [31] Zhao L, Wang Z, Lu C, Wang R, Hu C, Wang P, Qi J, Jiang T, Liu S, Ma Z, Qi F, Zhu P, Cheng Y, Shi Z, Shi Y, Song W, Zhu X, Shi J, Wang Y, Yan L, Zhu L, Xiang D and Zhang J 2018 Phys. Rev. X 8 021061 [32] Li R K, Hoffmann M C, Nanni E A, Glenzer S H, Kozina M E, Lindenberg A M, Ofori-Okai B K, Reid A H, Shen X, Weathersby S P, Yang J, Zajac M and Wang X J 2019 Phys. Rev. Accel. Beams 22 012803 [33] Zhao L, Wang Z, Tang H, Wang R, Cheng Y, Lu C, Jiang T, Zhu P, Hu L, Song W, Wang H, Qiu J, Kostin R, Jing C, Antipov S, Wang P, Qi J, Cheng Y, Xiang D and Zhang J 2019 Phys. Rev. Lett. 122 144801 [34] Zhao L, Tang H, Lu C, Jiang T, Zhu P, Hu L, Song W, Wang H, Qiu J, Jing C, Antipov S, Xiang D and Zhang J 2020 Phys. Rev. Lett. 124 054802 [35] Shin J, Kim H W, Baek I H, Park S, Bark H S, Oang K Y, Jang K H, Lee K, Rotermund F, Jeong Y U and Kim J 2020 Laser Photon. Rev. 15 2000326 [36] Georgiadis V, Healy A L, Hibberd M T, Burt G, Jamison S P and Graham D M 2021 Appl. Phys. Lett. 118 144102 [37] Zhang D, Kroh T, Ritzkowsky F, Rohwer T, Fakhari M, Cankaya H, Calendron A-L, Matlis N H and Kärtner F X 2021 Ultrafast Science 2021 9848526 [38] Snively E C, Othman M A K, Kozina M, Ofori-Okai B K, Weathersby S P, Park S, Shen X, Wang X J, Hoffmann M C, Li R K and Nanni E A 2020 Phys. Rev. Lett. 124 054801 [39] Wei L, Sun S, Guo C, Li Z, Sun K, Liu Y, Lu W, Sun Y, Tian H, Yang H and Li J 2017 Struct. Dyn. 4 044012 [40] Park H, Wang X, Nie S, Clinite R and Cao J 2005 Phys. Rev. B 72 100301 [41] Schutte B, Fruhling U, Wieland M, Azima A and Drescher M 2011 Opt. Express 19 18833 [42] Williams D B and Carter C B 2009 Transmission Electron Microscopy (2nd ed.) (Springer US) LXII, 775 [43] Ropagnol X, Morandotti R, Ozaki T and Reid M 2011 Opt. Lett. 36 2662 [44] Liu B, Bromberger H, Cartella A, Gebert T, Forst M and Cavalleri A 2017 Opt. Lett. 42 129 [45] Zhang B, Ma Z, Ma J, Wu X, Ouyang C, Kong D, Hong T, Wang X, Yang P, Chen L, Li Y and Zhang J 2021 Laser Photon. Rev. 15 200295 [46] Wang X and Li Y 2018 Chin. Phys. B 27 076102 [47] Wang X, Zhou J, Li J, Correa A A, Ping Y, Ogitsu T, Chen J and Cao J (Liu Z ed.) 2015 Ultrafast Nonlinear Imaging and Spectroscopy III 958406 [48] Ryabov A and Baum P 2016 Science 353 374 [49] Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z and Zhang J 2015 Proc. Natl. Acad. Sci. USA 112 14479 [50] Li J, Wang X, Chen Z, Zhou J, Mao S S and Cao J 2011 Appl. Phys. Lett. 98 011501 [51] Li R Z, Zhu P F, Chen L, Chen J, Cao J M, Sheng Z M and Zhang J 2014 J. Appl. Phys. 115 183507 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|