Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097303    DOI: 10.1088/1674-1056/ab9c0d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy

Chang Rao(饶畅)1, Zeyuan Fei(费泽元)1, Weiqu Chen(陈伟驱)1, Zimin Chen(陈梓敏)1, Xing Lu(卢星)1, Gang Wang(王钢)1, Xinzhong Wang(王新中)2, Jun Liang(梁军)3, Yanli Pei(裴艳丽)1,2
1 School of Electronics and Information Technology, State Key Laboratory of Optoelectronics Materials & Technologies, Sun Yat-Sen University, Guangzhou 510006, China;
2 Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
3 School of Advance Materials, Peking University Shenzhen Graduated School, Shenzhen 518055, China
Abstract  The ε-Ga2O3 p-n heterojunctions (HJ) have been demonstrated using typical p-type oxide semiconductors (NiO or SnO). The ε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition (MOCVD) with three-step growth method. The polycrystalline SnO and NiO thin films were deposited on the ε-Ga2O3 thin film by electron-beam evaporation and thermal oxidation, respectively. The valence band offsets (VBO) were determined by x-ray photoelectron spectroscopy (XPS) to be 2.17 eV at SnO/ε-Ga2O3 and 1.7 eV at NiO/ε-Ga2O3. Considering the bandgaps determined by ultraviolet-visible spectroscopy, the conduction band offsets (CBO) of 0.11 eV at SnO/ε-Ga2O3 and 0.44 eV at NiO/ε-Ga2O3 were obtained. The type-Ⅱ band diagrams have been drawn for both p-n HJs. The results are useful to understand the electronic structures at the ε-Ga2O3 p-n HJ interface, and design optoelectronic devices based on ε-Ga2O3 with novel functionality and improved performance.
Keywords:  ε-Ga2O3      x-ray photoelectron spectroscopy (XPS)      valence band offset      band alignment  
Received:  25 March 2020      Revised:  27 May 2020      Accepted manuscript online:  12 June 2020
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  73.20.At (Surface states, band structure, electron density of states)  
  73.61.Le (Other inorganic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774172), the Guangdong Provincial Department of Science and Technology, China (Grant Nos. 2019B010132002 and 2016B090918106), the Pengcheng Scholar Funding (2018), and Shenzhen Science and Technology Innovation Committee, China (Grant No. KQJSCX20180323174713505).
Corresponding Authors:  Yanli Pei     E-mail:  peiyanli@mail.sysu.edu.cn

Cite this article: 

Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽) Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy 2020 Chin. Phys. B 29 097303

[1] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[2] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202A2
[3] Baldini M, Albrecht M, Fiedler A, Irmscher K, Schewski R and Wagner G 2017 ECS J. Solid State Sci. Technol. 6 Q3040
[4] Watahiki T, Yuda Y, Furukawa A, Yamamuka M, Takiguchi Y and Miyajima S 2017 Appl. Phys. Lett. 111 222104
[5] Nakagomi S, Hiratsuka K, Kakuda Y and Yoshihiro K 2017 ECS J. Solid State Sci. Technol. 6 Q3030
[6] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
[7] Pavesi M, Fabbri F, Boschi F, Piacentini G, Baraldi A, Bosi M, Gombia E, Parisini A and Fornari R 2018 Mater. Chem. Phys. 205 502
[8] Qin Y, Long S, Dong H, He Q, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lv H, Liu Q and Liu M 2019 Chin. Phys. B 28 18501
[9] Xia X, Chen Y, Feng Q, Liang H, Tao P, Xu M and Du G 2016 Appl. Phys. Lett. 108 202103
[10] Cho S B and Mishra R 2018 Appl. Phys. Lett. 112 162101
[11] Zhuo Y, Chen Z, Tu W, Ma X, Pei Y and Wang G 2017 Appl. Surf. Sci. 420 802
[12] Chen Z, Li Z, Zhuo Y, Chen W, Ma X, Pei Y and Wang G 2018 Appl. Phys. Express 11 101101
[13] Ho Q D, Frauenheim T and Deák P 2018 J. Appl. Phys. 124 145702
[14] Kyrtsos A, Matsubara M and Bellotti E 2018 Appl. Phys. Lett. 112 032108
[15] Neal A T, Mou S, Rafique S, Zhao H, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D and Jessen G H 2018 Appl. Phys. Lett. 113 062101
[16] Cai C F, Wu H Z, Si J X, Jin S Q, Zhang W H, Xu Y and Zhu J F 2010 Chin. Phys. B 19 77301
[17] Chang S H, Chen Z Z, Huang W, Liu X C, Chen B Y, Li Z Z and Shi E W 2011 Chin. Phys. B 20 116101
[18] Zeng Y, Kuo C I, Hsu C, Najmzadeh M, Sachid A, Kapadia R, Yeung C, Chang E, Hu C and Javey A 2015 IEEE Trans. Nanotechnol. 14 580
[19] Li K H, Alfaraj N, Kang C H, Braic L, Hedhili M N, Guo Z, Ng T K and Ooi B S 2019 ACS Appl. Mater. Interfaces 11 35095
[20] Ghosh S, Baral M, Kamparath R, Choudhary R J, Phase D M, Singh S D and Ganguli T 2019 Appl. Phys. Lett. 115 061602
[21] Ghosh S, Baral M, Kamparath R, Singh S D and Ganguli T 2019 Appl. Phys. Lett. 115 251603
[22] Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113
[23] Nomura K, Kamiya T and Hosono H 2011 Adv. Mater. 23 3431
[24] Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R and Shan F 2016 Appl. Phys. Lett. 108 233506
[25] Reddy A M, Reddy A S, Lee K S and Reddy P S 2011 Solid State Sci. 13 314
[26] Pei Y, Liu W, Shi J, Chen Z and Wang G 2016 J. Electron. Mater. 45 5967
[27] Liang L Y, Liu Z M, Cao H T and Pan X Q 2010 ACS Appl. Mater. Interfaces 2 1060
[28] Kraut E A, grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
[29] Biesinger M C, Payne B P, Lau L W M, Gerson A and Smart R S C 2009 Surf. Interface Anal. 41 324
[30] Varghese A, Thakar D, Jindal K, Ghosh V, Medhekar S and Saurabh 2020 Nano Lett. 20 1707
[31] Marschall R 2014 Adv. Funct. Mater. 24 2421
[1] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[2] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[3] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[4] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[5] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[6] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[7] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[8] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[9] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[10] Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇). Chin. Phys. B, 2018, 27(11): 113101.
[11] Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method
Ying-Zi Peng(彭英姿), Yang Song(宋扬), Xiao-Qiang Xie(解晓强), Yuan Li(李源), Zheng-Hong Qian(钱正洪), Ru Bai(白茹). Chin. Phys. B, 2016, 25(5): 058104.
[12] A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing
Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠). Chin. Phys. B, 2016, 25(5): 058301.
[13] Energy-band alignment of atomic layer deposited (HfO2)x(Al2O3)1-x gate dielectrics on 4H-SiC
Jia Ren-Xu (贾仁需), Dong Lin-Peng (董林鹏), Niu Ying-Xi (钮应喜), Li Cheng-Zhan (李诚瞻), Song Qing-Wen (宋庆文), Tang Xiao-Yan (汤晓燕), Yang Fei (杨霏), Zhang Yu-Ming (张玉明). Chin. Phys. B, 2015, 24(3): 038103.
[14] Photoelectric characteristics of silicon P-N junction with nanopillar texture:Analysis of X-ray photoelectron spectroscopy
Liu Jing (刘静), Wang Jia-Ou (王嘉鸥), Yi Fu-Ting (伊福廷), Wu Rui (吴蕊), Zhang Nian (张念), Ibrahim Kurash (奎热西). Chin. Phys. B, 2014, 23(9): 096101.
[15] A theoretical investigation of the band alignment of type-I direct band gap dilute nitride phosphide alloy of GaNxAsyP1-x-y/GaP quantum wells on GaP substrates
Ö L Ünsal, B Gönül, M Temiz. Chin. Phys. B, 2014, 23(7): 077104.
No Suggested Reading articles found!