CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy |
Chang Rao(饶畅)1, Zeyuan Fei(费泽元)1, Weiqu Chen(陈伟驱)1, Zimin Chen(陈梓敏)1, Xing Lu(卢星)1, Gang Wang(王钢)1, Xinzhong Wang(王新中)2, Jun Liang(梁军)3, Yanli Pei(裴艳丽)1,2 |
1 School of Electronics and Information Technology, State Key Laboratory of Optoelectronics Materials & Technologies, Sun Yat-Sen University, Guangzhou 510006, China; 2 Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China; 3 School of Advance Materials, Peking University Shenzhen Graduated School, Shenzhen 518055, China |
|
|
Abstract The ε-Ga2O3 p-n heterojunctions (HJ) have been demonstrated using typical p-type oxide semiconductors (NiO or SnO). The ε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition (MOCVD) with three-step growth method. The polycrystalline SnO and NiO thin films were deposited on the ε-Ga2O3 thin film by electron-beam evaporation and thermal oxidation, respectively. The valence band offsets (VBO) were determined by x-ray photoelectron spectroscopy (XPS) to be 2.17 eV at SnO/ε-Ga2O3 and 1.7 eV at NiO/ε-Ga2O3. Considering the bandgaps determined by ultraviolet-visible spectroscopy, the conduction band offsets (CBO) of 0.11 eV at SnO/ε-Ga2O3 and 0.44 eV at NiO/ε-Ga2O3 were obtained. The type-Ⅱ band diagrams have been drawn for both p-n HJs. The results are useful to understand the electronic structures at the ε-Ga2O3 p-n HJ interface, and design optoelectronic devices based on ε-Ga2O3 with novel functionality and improved performance.
|
Received: 25 March 2020
Revised: 27 May 2020
Accepted manuscript online: 12 June 2020
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.61.Le
|
(Other inorganic semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774172), the Guangdong Provincial Department of Science and Technology, China (Grant Nos. 2019B010132002 and 2016B090918106), the Pengcheng Scholar Funding (2018), and Shenzhen Science and Technology Innovation Committee, China (Grant No. KQJSCX20180323174713505). |
Corresponding Authors:
Yanli Pei
E-mail: peiyanli@mail.sysu.edu.cn
|
Cite this article:
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽) Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy 2020 Chin. Phys. B 29 097303
|
[1] |
Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
|
[2] |
Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202A2
|
[3] |
Baldini M, Albrecht M, Fiedler A, Irmscher K, Schewski R and Wagner G 2017 ECS J. Solid State Sci. Technol. 6 Q3040
|
[4] |
Watahiki T, Yuda Y, Furukawa A, Yamamuka M, Takiguchi Y and Miyajima S 2017 Appl. Phys. Lett. 111 222104
|
[5] |
Nakagomi S, Hiratsuka K, Kakuda Y and Yoshihiro K 2017 ECS J. Solid State Sci. Technol. 6 Q3030
|
[6] |
Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
|
[7] |
Pavesi M, Fabbri F, Boschi F, Piacentini G, Baraldi A, Bosi M, Gombia E, Parisini A and Fornari R 2018 Mater. Chem. Phys. 205 502
|
[8] |
Qin Y, Long S, Dong H, He Q, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lv H, Liu Q and Liu M 2019 Chin. Phys. B 28 18501
|
[9] |
Xia X, Chen Y, Feng Q, Liang H, Tao P, Xu M and Du G 2016 Appl. Phys. Lett. 108 202103
|
[10] |
Cho S B and Mishra R 2018 Appl. Phys. Lett. 112 162101
|
[11] |
Zhuo Y, Chen Z, Tu W, Ma X, Pei Y and Wang G 2017 Appl. Surf. Sci. 420 802
|
[12] |
Chen Z, Li Z, Zhuo Y, Chen W, Ma X, Pei Y and Wang G 2018 Appl. Phys. Express 11 101101
|
[13] |
Ho Q D, Frauenheim T and Deák P 2018 J. Appl. Phys. 124 145702
|
[14] |
Kyrtsos A, Matsubara M and Bellotti E 2018 Appl. Phys. Lett. 112 032108
|
[15] |
Neal A T, Mou S, Rafique S, Zhao H, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D and Jessen G H 2018 Appl. Phys. Lett. 113 062101
|
[16] |
Cai C F, Wu H Z, Si J X, Jin S Q, Zhang W H, Xu Y and Zhu J F 2010 Chin. Phys. B 19 77301
|
[17] |
Chang S H, Chen Z Z, Huang W, Liu X C, Chen B Y, Li Z Z and Shi E W 2011 Chin. Phys. B 20 116101
|
[18] |
Zeng Y, Kuo C I, Hsu C, Najmzadeh M, Sachid A, Kapadia R, Yeung C, Chang E, Hu C and Javey A 2015 IEEE Trans. Nanotechnol. 14 580
|
[19] |
Li K H, Alfaraj N, Kang C H, Braic L, Hedhili M N, Guo Z, Ng T K and Ooi B S 2019 ACS Appl. Mater. Interfaces 11 35095
|
[20] |
Ghosh S, Baral M, Kamparath R, Choudhary R J, Phase D M, Singh S D and Ganguli T 2019 Appl. Phys. Lett. 115 061602
|
[21] |
Ghosh S, Baral M, Kamparath R, Singh S D and Ganguli T 2019 Appl. Phys. Lett. 115 251603
|
[22] |
Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113
|
[23] |
Nomura K, Kamiya T and Hosono H 2011 Adv. Mater. 23 3431
|
[24] |
Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R and Shan F 2016 Appl. Phys. Lett. 108 233506
|
[25] |
Reddy A M, Reddy A S, Lee K S and Reddy P S 2011 Solid State Sci. 13 314
|
[26] |
Pei Y, Liu W, Shi J, Chen Z and Wang G 2016 J. Electron. Mater. 45 5967
|
[27] |
Liang L Y, Liu Z M, Cao H T and Pan X Q 2010 ACS Appl. Mater. Interfaces 2 1060
|
[28] |
Kraut E A, grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
|
[29] |
Biesinger M C, Payne B P, Lau L W M, Gerson A and Smart R S C 2009 Surf. Interface Anal. 41 324
|
[30] |
Varghese A, Thakar D, Jindal K, Ghosh V, Medhekar S and Saurabh 2020 Nano Lett. 20 1707
|
[31] |
Marschall R 2014 Adv. Funct. Mater. 24 2421
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|