Special Issue:
SPECIAL TOPIC — Topological 2D materials
|
TOPICAL REVIEW—Topological 2D materials |
Prev
Next
|
|
|
Progress on 2D topological insulators and potential applications in electronic devices |
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮) |
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Two-dimensional topological insulators (2DTIs) have attracted increasing attention during the past few years. New 2DTIs with increasing larger spin-orbit coupling (SOC) gaps have been predicted by theoretical calculations and some of them have been synthesized experimentally. In this review, the 2DTIs, ranging from single element graphene-like materials to bi-elemental transition metal chalcogenides (TMDs) and to multi-elemental materials, with different thicknesses, structures, and phases, have been summarized and discussed. The topological properties (especially the quantum spin Hall effect and Dirac fermion feature) and potential applications have been summarized. This review also points out the challenge and opportunities for future 2DTI study, especially on the device applications based on the topological properties.
|
Received: 22 May 2020
Revised: 14 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant Nos. Z190006 and 4192054), the National Natural Science Foundation of China (Grant Nos. 61971035, 61901038, and 61725107), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 3050011181814). |
Corresponding Authors:
Liwei Liu
E-mail: liwei.liu@bit.edu.cn
|
Cite this article:
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮) Progress on 2D topological insulators and potential applications in electronic devices 2020 Chin. Phys. B 29 097304
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[3] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[4] |
Guzman-Verri G G and Voon L L Y 2007 Phys. Rev. B 76 075131
|
[5] |
Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[6] |
Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
|
[7] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[8] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[9] |
Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
|
[10] |
Filatova T G, Gurin P V, Kloo L, Kulbachinskii V A, Kuznetsov A N, Kytin V G, Lindsjo M and Popovkin B A 2007 J. Solid State Chem. 180 1103
|
[11] |
Li J and Chang K 2009 Appl. Phys. Lett. 95 222110
|
[12] |
Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
|
[13] |
de Juan F, Grushin A G, Morimoto T and Moore J E 2017 Nat. Commun. 8 1
|
[14] |
Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
|
[15] |
B Andrei Bernevig, Hughes L and Zhang S C 2006 Science 314 1757
|
[16] |
Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Molenkamp W, Xiao Liang Qi and Zhang S C 2007 Science 318 766
|
[17] |
Liu C, Hughes, L T, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
|
[18] |
Miao M S, Yan Q, Van de Walle C G, Lou W K, Li L L and Chang K 2012 Phys. Rev. Lett. 109 186803
|
[19] |
Zhang D, Lou W, Miao M, Zhang S and Chang K 2013 Phys. Rev. Lett. 111 156402
|
[20] |
Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
|
[21] |
Pan W, Dimakis E, Wang G T, Moustakas T D and Tsui D C 2014 Appl. Phys. Lett. 105 213503
|
[22] |
Zhou L, Dimakis E, Hathwar R, Toshihiro Aoki, Smith J, Moustakas T D, Goodnick S M and McCartney M R 2013 Phys. Rev. B 88 125310
|
[23] |
Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
|
[24] |
Guo Y, Pan F, Ye M, Sun X T, Wang Y Y, Li J Z, Zhang X Y, Zhang H, Pan Y Y, Song Z G, Yang J B and Lu J 2017 ACS Appl. Mater. Interfaces 9 23128
|
[25] |
Liu C C, Guan S, Song Z, Yang S A, Yang J B and Yao Y G 2014 Phys. Rev. B 90 085431
|
[26] |
Zhou J J, Feng W X, Liu C C, Guan S and Yao Y G 2014 Nano Lett. 14 4767
|
[27] |
Putungan D B, Lin S H and Kuo J L 2015 Phys. Chem. Chem. Phys. 17 21702
|
[28] |
Liu C C, Jiang H and Yao Y G 2011 Phys. Rev. B 84 195430
|
[29] |
Quhe R, Fei R X, Liu Q H, Zheng J X, Li H, Xu C Y, Ni Z Y, Wang Y Y, Yu D P and Gao Z X 2012 Sci. Rep. 2 853
|
[30] |
Ni Z Y, Zhong H X, Jiang X H, Quhe R, Luo G F, Wang Y Y, Ye M, Yang J B, Shi J J and Lu J 2014 Nanoscale 6 7609
|
[31] |
Liu H S, Han N N and Zhao J J 2014 J. Phys.: Condens. Matter 26 475303
|
[32] |
Houssa M, Pourtois G, Afanas'ev V and Stesmans A 2010 Appl. Phys. Lett. 97 112106
|
[33] |
Lew Yan Voon L, Sandberg E, Aga R and Farajian A 2010 Appl. Phys. Lett. 97 163114
|
[34] |
Wang R, Pi X D, Ni Z Y, Liu Y, Lin S S, Xu M S and Yang D R 2013 Sci. Rep. 3 3507
|
[35] |
Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
|
[36] |
Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
|
[37] |
Feng B J, Li H, Meng S, Chen L and Wu K H 2016 Surf. Sci. 645 74
|
[38] |
Ezawa M 2012 New J. Phys. 14 033003
|
[39] |
Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P and Lu J 2012 Nano Lett. 12 113
|
[40] |
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
|
[41] |
Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L and Wu K H 2012 Nano Lett. 12 3507
|
[42] |
Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater 30 1804650
|
[43] |
Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J and Cao G Y 2017 Adv. Mater. 29 1606046
|
[44] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[45] |
Feng B J, Zhou H, Feng Y, Liu H, He S L, Matsuda I, Chen L, Schwier E F, Shimada K and Meng S 2019 Phys. Rev. Lett. 122 196801
|
[46] |
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[47] |
Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
|
[48] |
Yang Z Q, Jia J F and Qian D 2016 Chin. Phys. B 25 117312
|
[49] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
|
[50] |
Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
|
[51] |
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407
|
[52] |
Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323
|
[53] |
Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. 127 3155
|
[54] |
Zhang S, Zhou W, Ma Y, Ji J, Cai B, Yang S A, Zhu Z, Chen Z and Zeng H 2017 Nano Lett. 17 3434
|
[55] |
Zhang S, Xie M, Cai B, Zhang H, Ma Y, Chen Z, Zhu Z, Hu Z and Zeng H 2016 Phys. Rev. B 93 245303
|
[56] |
Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z and Zeng H 2016 Angew. Chem. Int. Ed. 55 1666
|
[57] |
Zhou W H, Cai B, Guo S Y, Zhang S L, Hu X M, Qu H Z and Zeng H B 2019 Appl. Mater. Today 15 163
|
[58] |
Zhou W H, Chen J Y, Bai P X, Guo S Y, Zhang S L, Song X F, Tao L and Zeng H B 2019 Research 2019 1
|
[59] |
Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H W, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
|
[60] |
Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287
|
[61] |
Song Z G, Liu C C, Yang J B, Han J Z, Ye M, Fu B T, Yang Y C, Niu Q, Lu J and Yao Y G 2014 NPG Asia Mater. 6 e147
|
[62] |
Zhou J J, Feng W X, Liu G B and Yao Y G 2015 New J. Phys. 17 015004
|
[63] |
Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
|
[64] |
Ugeda M M, Pulkin A, Tang S, Ryu H, Wu Q, Zhang Y, Wong D, Pedramrazi Z, Martin-Recio A, Chen Y, Wang F, Shen Z X, Mo S K, Yazyev O V and Crommie M F 2018 Nat. Commun. 9 3401
|
[65] |
Song Y H, Jia Z Y, Zhang D, Zhu X Y, Shi Z Q, Wang H, Zhu L, Yuan Q Q, Zhang H, Xing D Y and Li S C 2018 Nat. Commun. 9 4071
|
[66] |
Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G and Fu Y S 2017 Nat. Commun. 8 659
|
[67] |
Tang S J, Zhang C F, Wong D, Pedramrazi Z, Tsai H Z, Jia C J, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D H, Moore R G, Hwang C, Hwang C, Hussain Z, Chen Y L, Ugeda M M, Liu Z, Xie X M, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys. 13 683
|
[68] |
Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
|
[69] |
Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y N, Zhang G B, Zhang P, Takeshi Kondo, Shik Shin, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T and Ding H 2019 Phys. Rev. X 9 041039
|
[70] |
Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
|
[71] |
Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
|
[72] |
Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 522
|
[73] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[74] |
Hajlaoui M, Papalazarou E, Mauchain J, Lantz G, Moisan N, Boschetto D, Jiang Z, Miotkowski I, Chen Y P, Ibrahimi A T, Perfetti L and Marsi M 2012 Nano Lett. 12 3532
|
[75] |
Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J and Sun D 2018 ACS Nano 12 4055
|
[76] |
Chan C K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104
|
[77] |
McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96
|
[78] |
Rao S 2016 J. Indian Inst. Sci. 96 145
|
[79] |
Zhu Z, Yan D, Nie X A, Xu H K, Yang X, Guan D D, Wang S y, Li Y Y, Liu C h, Liu J W, Luo H X, Zheng H and Jia J F 2019 Chin. Phys. B 28 077302
|
[80] |
Ma J C, Gu Q Q, Liu Y N, Lai J W, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476
|
[81] |
Pauly C, Rasche B, Koepernik K, Liebmann M, Pratzer M, Richter M, Kellner J, Eschbach M, Kaufmann B, Plucinski L, Schneider Claus M, Ruck M, van den Brink J and Morgenstern M 2015 Nat. Phys. 11 338
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|