Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097302    DOI: 10.1088/1674-1056/ab99b3
RAPID COMMUNICATION Prev   Next  

Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature

Huying Zheng(郑湖颖)1, Zhiyang Chen(陈智阳)1, Hai Zhu(朱海)1, Ziying Tang(汤梓荧)1, Yaqi Wang(王亚琪)1, Haiyuan Wei(韦海园)1, Chongxin Shan(单崇新)2
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.
Keywords:  quantum wells      exciton      polariton      microcavity  
Received:  29 April 2020      Revised:  04 June 2020      Accepted manuscript online:  05 June 2020
PACS:  73.21.Fg (Quantum wells)  
  71.35.-y (Excitons and related phenomena)  
  42.55.Sa (Microcavity and microdisk lasers)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974433, 91833301, and 11974122), the Guangdong Natural Science Fund for Distinguished Young Scholars, China (Grant No. 2016A030306044), and the Science and Technology Program of Guangzhou, China (Grant No. 201707020014).
Corresponding Authors:  Hai Zhu     E-mail:  zhuhai5@mail.sysu.edu.cn

Cite this article: 

Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新) Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature 2020 Chin. Phys. B 29 097302

[1] Deng H, Weihs G, Santori C, Bloch J and Yamamoto Y 2002 Science 298 199
[2] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F M, Szymanska M H, Andre R, Staehli J L, Savona V, Littlewood P B, Deveaud B and Dang L S 2006 Nature 443 409
[3] Romanelli M, Leyder C, Karr J P, Giacobino E and Bramati A 2007 Phys. Rev. Lett. 98 106401
[4] Byrnes T, Kim N Y and Yamamoto Y 2014 Nat. Phys. 10 803
[5] Sanvitto D and Kena-Cohen S 2016 Nat. Mater. 15 1061
[6] Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kena-Cohen S and Sanvitto D 2017 Nat. Phys. 13 837
[7] Lagoudakis K G, Wouters M, Richard M, Baas A, Carusotto I, Andre R, Dang L and Deveaud-Pledran B 2008 Nat. Phys. 4 706
[8] Christopoulos S, von Hogersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butte R, Feltin E, Carlin J F and Grandjean N 2007 Phys. Rev. Lett. 98 126405
[9] Kang J W, Song B Y, Liu W J, Park S J, Agarwal R and Cho C H 2019 Sci. Adv. 5 eaau9338
[10] Ballarini D, De Giorgi M, Cancellieri E, Houdre R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
[11] Kéna-Cohen S and Forrest S R 2010 Nat. Photon. 4 371
[12] Daskalakis K S, Maier S A, Murray R and Kéna-Cohen S 2014 Nat. Mater. 13 271
[13] Zhao F Q, Zhang M and Bai J H 2015 Chin. Phys. B 24 097105
[14] Chen A Q, Zhu H, Wu Y Y, Yang D C, Li J Y, Yu S F, Chen Z Y, Ren Y H, Gui X C, Wang S P and Tang Z K 2018 Adv. Opt. Mater. 6 1800407
[15] Liang Y C, Liu K K, Lu Y J, Zhao Q and Shan C X 2018 Chin. Phys. B 27 078102
[16] Lu Y J, Shi Z F, Shan C X and Shen D Z 2017 Chin. Phys. B 26 047703
[17] Sun L X, Chen Z H, Ren Q J, Yu K, Bai L H, Zhou W, Xiong H, Zhu Z Q and Shen X C 2008 Phys. Rev. Lett. 100 156403
[18] Duan Q, Xu D, Liu W, Lu J, Zhang L, Wang J, Wang Y, Gu J, Hu T, Xie W, Shen X and Chen Z 2013 Appl. Phys. Lett. 103 022103
[19] Zhang S F, Wei X, Dong H, Sun L, Ling Y, Jian L, Yu D, Shen W, Shen X and Chen Z 2012 Appl. Phys. Lett. 100 101912
[20] Schmidt-Grund R, Rheinlaender B, Czekalla C, Benndorf G, Hochmut H, Rahm A, Lorenz M and Grandmann M 2007 Superlattices & Microstruct. 41 360
[21] Kalusniak S, Sadofev S, Halm S and Henneberger F 2011 Appl. Phys. Lett. 98 011101
[22] Halm S, Kalusniak S, Sadofev S, Wunsche H J and Henneberger F 2011 Appl. Phys. Lett. 99 181121
[23] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[24] Timofeev V and Sanvitto D 2012 Exciton Polaritons in Microcavities (Berlin: Springer) Vol. 172
[25] Ferrier L, Wertz E, Johne R, Solnyshkov D D, Senellart P, Sagnes I, Lemaitre A, Malpuech G and Bloch J 2011 Phys. Rev. Lett. 106 126401
[26] Bhattacharya P, Frost T, Deshpande S, Baten M Z, Hazari A and Das A 2014 Phys. Rev. Lett. 112 236802
[27] Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaître A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G and Bloch J 2010 Nat. Phys. 6 860
[28] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[9] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[14] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[15] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
No Suggested Reading articles found!