Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058301    DOI: 10.1088/1674-1056/25/5/058301
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing

Chenliang Liang(梁晨亮)1,2, Weili Liu(刘卫丽)1, Shasha Li(李沙沙)1,2, Hui Kong(孔慧)1,2, Zefang Zhang(张泽芳)1, Zhitang Song(宋志棠)1
1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2. University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti-6Al-4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti-6Al-4V.
Keywords:  chemical mechanical polishing      titanium      electrochemical      x-ray photoelectron spectroscopy (XPS)  
Received:  23 November 2015      Revised:  20 January 2016      Accepted manuscript online: 
PACS:  83.50.Jf (Extensional flow and combined shear and extension)  
Fund: Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).
Corresponding Authors:  Weili Liu     E-mail:  rabbitlwl@mail.sim.ac.cn

Cite this article: 

Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠) A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing 2016 Chin. Phys. B 25 058301

[1] Boyer R R 1996 Mat. Sci. Eng. A 213 103
[2] Niinomi M 1998 Mat. Sci. Eng. A 243 231
[3] Segueeva A V, Stolyarov V V, Valiev R Z and Mukherjee A K 2002 Mat. Sci. Eng. A 323 318
[4] Geetha M, Singh A K, Asokamani R and Gogia A K 2009 Prog. Mater. Sci. 54 397
[5] Khan M A, Williams R L and Williams D F 1999 Biomaterials 20 631
[6] Long M and Rack H J 1998 Biomaterials 19 1621
[7] Kuphasuk C, Oshida Y, Andres C J, Hovijitra S T, Barco M T and Brown D T 2001 J. Prosthet. Dent. 85 195
[8] Zhou R, Wei D Q, Cao J Y, Feng W, Cheng S, Du Q, Li B Q, Wang Y M, Jia D C and Zhou Y 2015 ACS Appl. Mater. Interfaces 16 8932
[9] Lorenzetti M, Dogsa I, Stosicki T, Stopar D, Kalin M, Kobe S and Novak S 2015 ACS Appl. Mater. Interfaces 3 1644
[10] Zhang L, Ning C Y, Zhou T, Liu X M, Yeung K W K, Zhang T J, Xu Z S, Wang X B, Wu S L and Chu P K 2014 ACS Appl. Mater. Interfaces 20 17323
[11] Shen X K, Hu Y, Xu G Q, Chen W Z, Xu K, Ran Q C, Ma P P, Zhang Y R, Li J H and Cai K Y 2014 ACS Appl. Mater. Interfaces 18 16426
[12] Kutty M G, De A, Bhaduri S B and Yaghoubi A 2014 ACS Appl. Mater. Interfaces 16 13587
[13] Liu R C, Pai C S and Martinez E 1999 Solid-State Electro. 43 1003
[14] Seo Y J and Park S W 2007 J. Korean Phys. Soc. 50 643
[15] Aimi M F, Rao M P, Macdonald N C, Zuzuri A S and Bothman D P 2004 Nat. Mater. 3 103
[16] Xia M J, Zhu M, Wang Y C, Song Z T, Rao F, Wu L C, Cheng Y and Song S N 2015 ACS Appl. Mater. Interfaces 14 7627
[17] Deligianni D D, Katsala N, Ladas S, Sotiropoulou D, Amedee J and Missirlis Y F 2001 Biomaterials 11 1241
[18] Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M and Martelet C 2003 Mat. Sci. Eng. C 4 551
[19] Palmieri F L, Watson K A, Morales G, Williams T, Hicks R, Wohl C J, Hopkins J W and Connell J W 2013 ACS Appl. Mater. Interfaces 4 1254
[20] Carrado A 2010 ACS Appl. Mater. Interfaces 2 561
[21] Ghosh A K and Hamilton C H 1979 Metall. Mater. Trans. A 6 699
[22] Tseng W T, Chin J H and Kang L C 1999 J. Electrochem. Soc. 146 1952
[23] Ahmadi G and Xia X 2001 J. Electrochem. Soc. 148 G99
[24] Shi F G and Zhao B 1998 Appl. Phys. A 67 249
[25] Luo Q, Ramarajan S and Babu S V 1998 Thin Solid Films 335 160
[26] Orazem M E and Tribollet B 2008 Electrochemical Impedance Spectroscopy (Canada: Wiley)
[27] Kaesche H 2003 Corrosion of Metals: Physicochemical Principles and Current Problems (Berlin: Springer)
[28] Munoz-Portero M J, Garcia-Anton J, Guinon J L and Leiva-Garcia R 2011 Corros. Sci. 53 1440
[29] Fadl-Allah S A, El-Sherief R M and Badawy W A 2008 J. Appl. Electrochem. 38 1459
[30] Schmidt A M and Azambuja D S 2010 Mater. Res.-Ibero.-Am. J. 13 45
[31] Hwang M J, Park E J, Moon W J, Song H J and Park Y J 2015 Corros. Sci. 96 152
[32] Brug G J, van den Eeden A L G, Sluyters-Rehbach M and Sluyters J H 1984 J. Electroanal. Chem. 176 275
[33] Moulder J F 1995 Handbook of X-ray Photoelectron Spectroscopy (USA: Physical Electronics)
[34] Babelon P, Dequiedt A S, Mostefa-Sba H, Bourgeois S, Sibillot P and Sacilotti M 1998 Thin Solid Films 322 63
[35] Kumar P M, Badrinarayanan S and Sastry M 2000 Thin Solid Films 358 122
[1] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[2] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[3] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[4] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[5] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[6] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[7] Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
Xiao Wang(王骁), Yu-Min Zhang(张育民), Yu Xu(徐俞), Zhi-Wei Si(司志伟), Ke Xu(徐科), Jian-Feng Wang(王建峰), and Bing Cao(曹冰). Chin. Phys. B, 2021, 30(6): 067306.
[8] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[9] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[10] Mechanism of titanium-nitride chemical mechanical polishing
Dao-Huan Feng(冯道欢), Ruo-Bing Wang(王若冰), Ao-Xue Xu(徐傲雪), Fan Xu(徐帆), Wei-Lei Wang(汪为磊), Wei-Li Liu(刘卫丽), and Zhi-Tang Song(宋志棠). Chin. Phys. B, 2021, 30(2): 028301.
[11] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[12] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[13] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[14] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[15] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
No Suggested Reading articles found!