Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077104    DOI: 10.1088/1674-1056/23/7/077104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A theoretical investigation of the band alignment of type-I direct band gap dilute nitride phosphide alloy of GaNxAsyP1-x-y/GaP quantum wells on GaP substrates

Ö L Ünsal, B Gönül, M Temiz
Department of Engineering Physics, University of Gaziantep, 27310 Gaziantep, Turkey
Abstract  The GaP-based dilute nitride direct band gap material Ga(NAsP) is gaining importance due to the monolithic integration of laser diodes on Si microprocessors. The major advantage of this newly proposed laser material system is the small lattice mismatch between GaP and Si. However, the large threshold current density of these promising laser diodes on Si substrates shows that the carrier leakage plays an important role in Ga(NAsP)/GaP QW lasers. Therefore, it is necessary to investigate the band alignment in this laser material system. In this paper, we present a theoretical investigation to optimize the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs on GaP substrates. We examine the effect of nitrogen (N) concentration on the band offset ratios and band offset energies. We also provide a comparison of the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs with that of the GaNxAsyP1-x-y/AlzGa1-zP QWs on GaP substrates. Our theoretical calculations indicate that the incorporations of N into the well and Al into the barrier improve the band alignment compared to that of the GaAsP/GaP QW laser heterostructures.
Keywords:  quantum well      band alignment      carrier confinement      dilute nitride phosphide alloy  
Received:  24 December 2013      Revised:  14 January 2014      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.55.Eq (III-V semiconductors)  
  73.21.Fg (Quantum wells)  
Corresponding Authors:  Ö L Ünsal     E-mail:  omerlutfiunsal@gmail.com
About author:  71.20.-b; 71.55.Eq; 73.21.Fg

Cite this article: 

Ö L Ünsal, B Gönül, M Temiz A theoretical investigation of the band alignment of type-I direct band gap dilute nitride phosphide alloy of GaNxAsyP1-x-y/GaP quantum wells on GaP substrates 2014 Chin. Phys. B 23 077104

[1] Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S and Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273
[2] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[3] Kurtz S R, Allerman A A, Jones E D, Gee J M, Banas J J and Hammons B E 1999 Appl. Phys. Lett. 74 729
[4] Chamings J, Ahmed S, Adams A, Sweeney S J, Odnoblyudov V A, Tu C W, Kunert B and Stolz W 2009 Phys. Status Solidi B 246 527
[5] Yonezu H 2002 Semicond. Sci. Technol. 17 762
[6] Kunert B, Volz K, Koch J and Stolz W 2006 Appl. Phys. Lett. 88 182108
[7] Kunert B, Reinhard S, Koch J, Lampalzer M, Volz K and Stolz W 2006 Phys. Status Solidi C 3 614
[8] Borck S, Chatterjee S, Kunert B, Volz K, Stolz W, Heber J and Rühle W W 2006 Appl. Phys. Lett. 89 031102
[9] Hossain N, Jin S R, Liebich S, Zimprich M, Volz K, Kunert B, Stolz W and Sweeney S J 2012 Appl. Phys. Lett. 101 011107
[10] Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M and Kurtz S R 1999 Phys. Rev. Lett. 82 3312
[11] Shan W, Walukiewicz W, Ager Ⅲ J W, Haller E E, Geisz J F, Friedman D J, Olson J M and Kurtz S R 1999 Phys. Rev. Lett. 82 1221
[12] Chamings J, Adams A R, Sweeney S J, Kunert B, Volz K and Stolz W 2008 Appl. Phys. Lett. 93 101108
[13] Zhang Y, Fluegel B, Hanna M C, Geisz J F, Wang L W and Mascarenhas A 2003 Phys. Status Solidi B 240 396
[14] Robert C, Perrin M, Cornet C, Even J and Jancu J M 2012 Appl. Phys. Lett. 100 111901
[15] Kunert B, Volz K and Stolz W 2007 Phys. Status Solidi B 244 2730
[16] Kasap S and Capper P 2006 Handbook of Electronic and Photonic Materials (Würzburg: Springer) pp. 736-737
[17] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[18] Piprek J 2003 Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (California: Academic Press) p. 43
[19] Gönül B, Köksal K and Bakır E 2006 Physica E 31 148
[20] Gönül B, Bakır E and Köksal K 2006 Semicond. Sci. Technol. 21 876
[21] Köksal K and Gönül B 2011 Physica E 43 919
[22] Gönül B, Koçak F, Toktamış H and Oduncuoğlu M 2004 Chin. J. Phys. 42 764
[23] Minch J, Park S H, Keating T and Chuang S L 1999 IEEE J. Quantum Electron 35 771
[24] Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118
[25] VanDeWalle C 1989 Phys. Rev. B 39 1871
[26] Kunert B, Volz K, Nemeth I and Stolz W 2006 J. Lumin. 121 361
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[7] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[8] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[9] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[10] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[11] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[12] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[13] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[14] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[15] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
No Suggested Reading articles found!