Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 075201    DOI: 10.1088/1674-1056/abe1a1
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Synthesis of SiC/graphene nanosheet composites by helicon wave plasma

Jia-Li Chen(陈佳丽)1,2, Pei-Yu Ji(季佩宇)1,2, Cheng-Gang Jin(金成刚)3, Lan-Jian Zhuge(诸葛兰剑)4,†, and Xue-Mei Wu(吴雪梅)1,2,‡
1 School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
2 The Key Laboratory of Thin Films of Jiangsu Province, Soochow University, Suzhou 215006, China;
3 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China;
4 Analysis and Testing Center, Soochow University, Suzhou 215123, China
Abstract  We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet (SiC/GNSs) composites by using a high-density helicon wave plasma (HWP) source. The microstructure and morphology of the SiC/GNSs are characterized by using scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and fluorescence (PL). The nucleation mechanism and the growth model are discussed. The existence of SiC and graphene structure are confirmed by XRD and Raman spectra. The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 eV that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.
Keywords:  helicon wave plasma      SiC/graphene nanosheet      x-ray photoelectron spectroscopy (XPS)      fluorescence  
Received:  24 November 2020      Revised:  20 January 2021      Accepted manuscript online:  01 February 2021
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  68.35.bt (Other materials)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20_2649).
Corresponding Authors:  Lan-Jian Zhuge, Xue-Mei Wu     E-mail:  ljzhuge@suda.edu.cn;xmwu@suda.edu.cn

Cite this article: 

Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅) Synthesis of SiC/graphene nanosheet composites by helicon wave plasma 2021 Chin. Phys. B 30 075201

[1] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B 26 047309
[2] Taylor N R, Yu Y, Ji M, Aytug T, Mahurin S, Mayes R, Centiner S, Paranthaman M P, Ezell D, Cao L R and Joshi P C 2020 Appl. Phys. Lett. 116 252108
[3] Matsumoto T, Takahashi J, Tamaki T, Futagi T, Mimura H and Kanemitsu Y 1994 Appl. Phys. Lett. 64 226
[4] Rittenhouse T L, Bohna P W, Hossain T K, Adesida I, Lindesay J and Marcus A 2004 J. Appl. Phys. 95 490
[5] Fan J, Li H, Jiang J, So L K Y, Lam Y W and Chu P K 2008 Small 4 1058
[6] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[7] Zhang Y, Xia T, Wallenmeyer P, Harris C X, Peterson A A, Corsiglia G A, Murowchick J and Chen X 2014 Energy Technol. 2 183
[8] Li J C, Lee C S and Lee S T 2002 Chem. Phys. Lett. 355 147
[9] Geim A K and Novoselov K S 2007 The Rise of Graphene
[10] WirthLima A J, AlvesSousa P P and BezerraFraga W 2020 Chin. Phys. B 29 037801
[11] Lanting J I, Chen W, Gao Y, Yan X and Zhang D 2020 Chin. Phys. B 29 084207
[12] Ramirez C, Figueiredo F M, Miranzo P, et al. 2012 Carbon. 50 3607
[13] Huang X, Yin Z, Wu S, et al. 2011 Small. 7 1876
[14] Ermakova E N, Sysoev S V, Nikulina L D, Tsyrendorzhieva I P, Rakhlin V I and Kosinova M L 2015 Thermochim. Acta 622 2
[15] Zaitseva N, Hamel S, Dai Z R, Saw C, Williamson A and Galli G 2008 J. Phys. Chem. C 112 3585
[16] Askari S, Ul Haq A, Macias-Montero M, Levchenko I, Yu F, Zhou W, Ken Ostrikov K, Maguire P, Svrcek V and Mariotti D 2016 Nanoscale 8 17141
[17] Lemieux J M and Zhang J 2014 Int. J. Mass Spectrom. 373 50
[18] Lin H, Gerbec J A, Sushchikh M and McFarland E W 2008 Nanotechnology 19 325601
[19] Welzel T, Dani I and Richter F 2002 Plasma Sources Sci. T 11 351
[20] Haq A U, Lucke P, Benedikt J, Maguire P and Mariotti D 2020 Plasma Process Polym. 17 1900243
[21] Chen F F 2015 Plasma Sources Science & Technology 24 014001
[22] Huang T Y, Jin C G, Yu J, Wu X M and Zhuge L J 2016 Sci. China- Phys. Mech. Astron. 59 645201
[23] Huang T, Jin C, Yu J, Yang Y, Zhuge L, Wu X and Sha Z 2017 Plasma Chem. Plasma Process. 37 1237
[24] Hiramatsu M and Hori M 2010 Carbon nanowalls synthesis and emerging applications (Springer Science & Business Media), pp. 2-3
[25] Jiang Q L, Duan Z M, Shuai Q L, et al. 2019 Acta Phys. Sin. 68 240701 (in Chinese)
[26] Chen J, Li N, Wei Y, Han B and Yan W 2016 Ceram. Int. 42 17650
[27] Kang B C, Lee S B and Boo J H 2004 Thin Solid Films 464 215
[28] Sung B S and Yun Y H 2017 SiC Conversion Coating Prepared from Silica-Graphite Reaction. Advances in Materials Science and Engineering, pp. 1-8
[29] Chen Y, Wang C, Zhu B, Wang Y, Liu Y, Tan T, Gao R, Lin X and Meng F 2012 J. Crystal Growth 357 42
[30] Wang Z, Shoji M and Ogata H 2011 Appl. Surf. Sci. 257 9082
[31] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[32] Ferrari A C 2007 Solid State Commun. 143 47
[33] Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
[34] Dato A, Radmilovic V, Lee Z, Phillips J and Frenklach M 2008 Nano Lett. 8 2012
[35] Seo D H, Rider A E, Kumar S, Randeniya L K and Ostrikov K 2013 Carbon 60 221
[36] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[37] Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36
[38] Nawaz A, Mao W G, Lu C and Shen Y G 2017 Ceram. Int. 43 385
[39] Yang D Q and Sacher E 2002 Surf. Sci. 504 125
[40] Yang D Q, Rochette J F and Sacher E 2005 Langmuir. 21 8539
[41] Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A and Tascón J M D 2009 Langmuir. 25 5957
[42] Wrobel A M, Walkiewicz-Pietrzykowska A, Ahola M, Vayrynen I J, Ferrer-Fernandez F J and Gonzalez-Elipe A R 2009 Chem. Vap. Depos. 15 39
[43] Yang X, Yang X, Kawai K, Arima K and Yamamura K 2019 Electrochem. Commun. 100 1
[44] Shi Y 2015 Accounts of Chemical Research 48 163
[45] Ji P, Chen J, Huang T, Jin C, Zhuge L and Wu X 2020 Appl. Phys. A 126 1
[46] Welzel T, Dani I and Richter F 2002 Plasma Sourc. Sci. Technol. 11 351
[47] Yang Y, Fei H, Ruan G, Li L, Wang G, Kim N D and Tour J M 2015 ACS Appl. Mater. Interfaces 7 20607
[48] Árias J A, Hurtado F, Vargas F, Estrada G, Cadavid E, Ortiz M R, Palacio C C and Vargas F 2019 Ceram Int. 45 20936
[49] Xu J, Zhang C, Sun G, Xiao J, Zhang L and Zhang G 2020 Tribology International 146 106220
[50] Naveed M A, Qayyum A, Ali S and Zakaullah M 2006 Phys. Lett. A 359 499
[51] Griem H R 1963 Phys. Rev. 131 1170
[52] Chen J, Tang W, Xin L and Shi Q 2011 Appl. Phys. A 102 213
[53] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W and Chhowalla M 2010 Adv. Mater. 22 505
[54] Chen C, Ogino A, Wang X and Nagatsu M 2011 Diam. Relat. Mater. 20 153
[55] Fanchini G, Messina G, Paoletti A, Ray S C, Santangelo S, Tagliaferro A and Tucciarone A 2002 Surf. Coat. Technol. 151 257
[56] Wang Y, Li J and Song K 2014 Journal of Luminescence 149 258
[57] Feng D H, Jia T Q, Li X X, Xu Z Z, Chen J, Deng S Z, Wu Z S and Xu N S 2003 Solid State Commun. 128 295
[58] Pol V G, Pol S V, Gedanken A, Lim S H, Zhong Z and Lin J 2006 Phys. Chem. B 110 11237
[59] Fan J Y, Wu X L, Kong F, Kong T, Qiu T and Huang G S 2005 Appl. Phys. Lett. 86 171903
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[5] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[6] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[7] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[8] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[9] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[10] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[11] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[12] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[15] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
No Suggested Reading articles found!