1 School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; 2 The Key Laboratory of Thin Films of Jiangsu Province, Soochow University, Suzhou 215006, China; 3 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China; 4 Analysis and Testing Center, Soochow University, Suzhou 215123, China
Abstract We report an approach to the rapid, one-step, preparation of a variety of wide-bandgap silicon carbide/graphene nanosheet (SiC/GNSs) composites by using a high-density helicon wave plasma (HWP) source. The microstructure and morphology of the SiC/GNSs are characterized by using scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and fluorescence (PL). The nucleation mechanism and the growth model are discussed. The existence of SiC and graphene structure are confirmed by XRD and Raman spectra. The electron excitation temperature is calculated by the intensity ratio method of optical emission spectroscopy. The main peak in the PL test is observed at 420 nm, with a corresponding bandgap of 2.95 eV that indicates the potential for broad application in blue light emission and ultraviolet light emission, field electron emission, and display devices.
Fund: Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20_2649).
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅) Synthesis of SiC/graphene nanosheet composites by helicon wave plasma 2021 Chin. Phys. B 30 075201
[1] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B26 047309 [2] Taylor N R, Yu Y, Ji M, Aytug T, Mahurin S, Mayes R, Centiner S, Paranthaman M P, Ezell D, Cao L R and Joshi P C 2020 Appl. Phys. Lett.116 252108 [3] Matsumoto T, Takahashi J, Tamaki T, Futagi T, Mimura H and Kanemitsu Y 1994 Appl. Phys. Lett.64 226 [4] Rittenhouse T L, Bohna P W, Hossain T K, Adesida I, Lindesay J and Marcus A 2004 J. Appl. Phys.95 490 [5] Fan J, Li H, Jiang J, So L K Y, Lam Y W and Chu P K 2008 Small4 1058 [6] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B25 067205 [7] Zhang Y, Xia T, Wallenmeyer P, Harris C X, Peterson A A, Corsiglia G A, Murowchick J and Chen X 2014 Energy Technol.2 183 [8] Li J C, Lee C S and Lee S T 2002 Chem. Phys. Lett.355 147 [9] Geim A K and Novoselov K S 2007 The Rise of Graphene [10] WirthLima A J, AlvesSousa P P and BezerraFraga W 2020 Chin. Phys. B29 037801 [11] Lanting J I, Chen W, Gao Y, Yan X and Zhang D 2020 Chin. Phys. B29 084207 [12] Ramirez C, Figueiredo F M, Miranzo P, et al. 2012 Carbon.50 3607 [13] Huang X, Yin Z, Wu S, et al. 2011 Small.7 1876 [14] Ermakova E N, Sysoev S V, Nikulina L D, Tsyrendorzhieva I P, Rakhlin V I and Kosinova M L 2015 Thermochim. Acta622 2 [15] Zaitseva N, Hamel S, Dai Z R, Saw C, Williamson A and Galli G 2008 J. Phys. Chem. C112 3585 [16] Askari S, Ul Haq A, Macias-Montero M, Levchenko I, Yu F, Zhou W, Ken Ostrikov K, Maguire P, Svrcek V and Mariotti D 2016 Nanoscale8 17141 [17] Lemieux J M and Zhang J 2014 Int. J. Mass Spectrom.373 50 [18] Lin H, Gerbec J A, Sushchikh M and McFarland E W 2008 Nanotechnology19 325601 [19] Welzel T, Dani I and Richter F 2002 Plasma Sources Sci. T11 351 [20] Haq A U, Lucke P, Benedikt J, Maguire P and Mariotti D 2020 Plasma Process Polym.17 1900243 [21] Chen F F 2015 Plasma Sources Science & Technology 24 014001 [22] Huang T Y, Jin C G, Yu J, Wu X M and Zhuge L J 2016 Sci. China- Phys. Mech. Astron.59 645201 [23] Huang T, Jin C, Yu J, Yang Y, Zhuge L, Wu X and Sha Z 2017 Plasma Chem. Plasma Process.37 1237 [24] Hiramatsu M and Hori M 2010 Carbon nanowalls synthesis and emerging applications (Springer Science & Business Media), pp. 2-3 [25] Jiang Q L, Duan Z M, Shuai Q L, et al. 2019 Acta Phys. Sin.68 240701 (in Chinese) [26] Chen J, Li N, Wei Y, Han B and Yan W 2016 Ceram. Int.42 17650 [27] Kang B C, Lee S B and Boo J H 2004 Thin Solid Films464 215 [28] Sung B S and Yun Y H 2017 SiC Conversion Coating Prepared from Silica-Graphite Reaction. Advances in Materials Science and Engineering, pp. 1-8 [29] Chen Y, Wang C, Zhu B, Wang Y, Liu Y, Tan T, Gao R, Lin X and Meng F 2012 J. Crystal Growth357 42 [30] Wang Z, Shoji M and Ogata H 2011 Appl. Surf. Sci.257 9082 [31] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett.97 187401 [32] Ferrari A C 2007 Solid State Commun.143 47 [33] Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett.91 233108 [34] Dato A, Radmilovic V, Lee Z, Phillips J and Frenklach M 2008 Nano Lett.8 2012 [35] Seo D H, Rider A E, Kumar S, Randeniya L K and Ostrikov K 2013 Carbon60 221 [36] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon45 1558 [37] Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A and Car R 2008 Nano Lett.8 36 [38] Nawaz A, Mao W G, Lu C and Shen Y G 2017 Ceram. Int.43 385 [39] Yang D Q and Sacher E 2002 Surf. Sci.504 125 [40] Yang D Q, Rochette J F and Sacher E 2005 Langmuir.21 8539 [41] Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A and Tascón J M D 2009 Langmuir.25 5957 [42] Wrobel A M, Walkiewicz-Pietrzykowska A, Ahola M, Vayrynen I J, Ferrer-Fernandez F J and Gonzalez-Elipe A R 2009 Chem. Vap. Depos.15 39 [43] Yang X, Yang X, Kawai K, Arima K and Yamamura K 2019 Electrochem. Commun.100 1 [44] Shi Y 2015 Accounts of Chemical Research48 163 [45] Ji P, Chen J, Huang T, Jin C, Zhuge L and Wu X 2020 Appl. Phys. A126 1 [46] Welzel T, Dani I and Richter F 2002 Plasma Sourc. Sci. Technol.11 351 [47] Yang Y, Fei H, Ruan G, Li L, Wang G, Kim N D and Tour J M 2015 ACS Appl. Mater. Interfaces7 20607 [48] Árias J A, Hurtado F, Vargas F, Estrada G, Cadavid E, Ortiz M R, Palacio C C and Vargas F 2019 Ceram Int.45 20936 [49] Xu J, Zhang C, Sun G, Xiao J, Zhang L and Zhang G 2020 Tribology International146 106220 [50] Naveed M A, Qayyum A, Ali S and Zakaullah M 2006 Phys. Lett. A359 499 [51] Griem H R 1963 Phys. Rev.131 1170 [52] Chen J, Tang W, Xin L and Shi Q 2011 Appl. Phys. A102 213 [53] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W and Chhowalla M 2010 Adv. Mater.22 505 [54] Chen C, Ogino A, Wang X and Nagatsu M 2011 Diam. Relat. Mater.20 153 [55] Fanchini G, Messina G, Paoletti A, Ray S C, Santangelo S, Tagliaferro A and Tucciarone A 2002 Surf. Coat. Technol.151 257 [56] Wang Y, Li J and Song K 2014 Journal of Luminescence149 258 [57] Feng D H, Jia T Q, Li X X, Xu Z Z, Chen J, Deng S Z, Wu Z S and Xu N S 2003 Solid State Commun.128 295 [58] Pol V G, Pol S V, Gedanken A, Lim S H, Zhong Z and Lin J 2006 Phys. Chem. B110 11237 [59] Fan J Y, Wu X L, Kong F, Kong T, Qiu T and Huang G S 2005 Appl. Phys. Lett.86 171903
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.