|
|
Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study |
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇) |
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectroscopy (XPS) and the x-ray absorption near-edge structure (XANES) spectra of the interfacial structure of an s-triazine molecule adsorbed on Si(100) surface have been performed by the first principles, and the landscape of the s-triazine molecule on Si(100) surface has been described in detail. Both the XPS and XANES spectra have shown their dependence on different structures for the pristine s-triazine molecule and its several possible adsorbed configurations. By comparison with the XPS spectra, the XANES spectra display the strongest structural dependency of all of the studied systems and thus could be well applied to identify the chemisorbed s-triazine derivatives. The exploration of spectral components originated from non-equivalent carbons in disparate local environments has also been implemented for both the XPS and XANES spectra of s-triazine adsorbed configurations.
|
Received: 03 August 2018
Revised: 05 September 2018
Accepted manuscript online:
|
PACS:
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874242, 11804196, and 11804197). |
Corresponding Authors:
Xiu-Neng Song, Yong Ma
E-mail: xiuneng@sdnu.edu.cn;mayong@sdnu.edu.cn
|
Cite this article:
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇) Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study 2018 Chin. Phys. B 27 113101
|
[1] |
Romeo M, Balducci G, Stener M and Fronzoni G 2014 Surf. Sci. 118 1049
|
[2] |
Filler M A and Bent S F 2003 Prog. Surf. Sci. 73 1
|
[3] |
Bent S F 2002 Surf. Sci. 500 879
|
[4] |
Cummings S P, Savchenko J and Ren T 2011 Coord. Chem. Rev. 255 1587
|
[5] |
O'Donnell K M, Warschkow O, Suleman A, Fahy A, Thomsen L and Schofield S R 2015 Coord. Chem. Rev. 27 054002
|
[6] |
Wakayama Y and Hayakawa R 2014 Thin Solid Films 554 2
|
[7] |
Shan T P, Buckley J, Huang K, Calborean A and Gély M, Delapierre G, Duclairoir G F, Marchon J C, Jalaguier E, Maldivi P, Salvo B D and Deleonibus S 2009 IEEE Trans. Nanotechnol. 8 204
|
[8] |
Wolkow R A 1999 Annu. Rev. Phys. Chem. 50 413
|
[9] |
Feng T and Bernasek S L and Guo Q X 2009 Chem. Rev. 109 3991
|
[10] |
Krutz L J, Shaner D L, Weaver M A, Webb R M, Zablotowicz R M, Reddy K N, Huang Y B and Thomson S J 2010 Pest Manag Sci 66 461
|
[11] |
Lim F P L and Dolzhenko A V2014 Eur. J. Med. Chem. 85 371
|
[12] |
Ng W K H, Liu J W and Liu Z F 2015 Phys. Chem. Chem. Phys. 17 16876
|
[13] |
Wang Q Q, Li P, Gao T, Wang H Y and Ao B Y 2016 Chin. Phys. B 25 063102
|
[14] |
Paukshtis E A, Soltanov R I and Yurchenko E N 1981 React. Kinet. Catal. Lett. 16 93
|
[15] |
Hayashi S and Ohmine I 2000 J. Phys. Chem. B 104 10678
|
[16] |
Fleischmann M, Hendra P J and McQuillan A J 1974 Chem. Phys. Lett. 26 163
|
[17] |
Castner D G, Hinds K and Grainger D W 1996 Langmuir 12 5083
|
[18] |
Ishida T, Hara M, Kojima I, Tsuneda S, Nishida N, Sasabe H and Knoll W 1998 Langmuir 14 2092
|
[19] |
Zhang H C, Liu H, Qiao W Q, Li X J, He S Y and Abraimof V V 2012 Acta Phys. Sin 61 034213(in Chinese)
|
[20] |
Yan Z X 2011 Acta Phys. Sin 60 076202(in Chinese)
|
[21] |
Luo C X, Xia H P, Yu C and Xu J 2011 Acta Phys. Sin 60 077806(in Chinese)
|
[22] |
Gao M, Du H W, Yang J, Zhao L, Xu J and Ma Z Q 2017 Chin. Phys. B 26 045201
|
[23] |
Ma Y, Wang S Y, Hu J, Song X N, Zhou Y and Wang C K 2018 Mater. Chem. Phys. 207 309
|
[24] |
Song X N, Hu J, Wang S Y, Ma Y, Zhou Y and Wang C K 2017 Phys. Chem. Chem. Phys. 19 32647
|
[25] |
Ma Y, Wang S Y, Hu J, Zhou Y, Song X N and Wang C K 2018 J. Phys. Chem. A 122 1019
|
[26] |
Ma Y, Wang S Y, Hu J, Zhang J R, Lin J, Yang S Q and Song X N 2018 J. Phys. Chem. A 122 4750
|
[27] |
Bournel F, Carniato S, Dufour G, Gallet J J, Ilakovac V, Rangan S, Rochet F and Sirotti F 2006 Phys. Rev. B 73 125345
|
[28] |
Besley N A and Blundy A J 2006 J. Phys. Chem. B 110 1701
|
[29] |
Besley N A and Noble A 2007 J. Phys. Chem. C 111 3333
|
[30] |
Carniato S, Rochet F, Gallet J J, Bournel F, Dufour G, Mathieu C and Rangan S 2007 Surf. Sci. 601 5515
|
[31] |
Carniato S, Rochet F, Gallet J J, Bournel F, Dufour G, Mathieu C and Rangan S 2009 Surf. Sci. 603 158
|
[32] |
Ng W K H, Liu J W and Liu Z F 2013 J. Phys. Chem. C 117 26644
|
[33] |
http://gaussian.com/g09citation/
|
[34] |
http://www.fhi-berlin.mpg.de/KHsoftware/StoBe/whatsnew.html
|
[35] |
Becke A D 1988 Phys. Rev. A 38 3098
|
[36] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[37] |
Gao B, Liu L, Wang C R, Wu Z Y and Luo Y 2007 J. Chem. Phys. 127 164314
|
[38] |
Song X N, Ma Y, Wang C K, Dietrich P M, Unger W E S and Luo Y 2012 J. Phys. Chem. C 116 12649
|
[39] |
Song X N, Ma Y, Wang C K and Luo Y 2011 Chem. Phys. Lett. 517 199
|
[40] |
Song X N, Wang G W, Ma Y, Jiang S Z, Yue W W, Wang C K and Luo Y 2016 J. Phys. Chem. A 120 9932
|
[41] |
Song X N, Wang G W, Ma Y, Jiang S Z, Yue W W, Xu S C and Wang C K 2016 Chem. Phys. Lett. 645 164
|
[42] |
Wang G W, Ma Y, Song X N, Jiang S Z, Yue W W, Wang C K and Luo Y 2016 J. Phys. Chem. C 120 13779
|
[43] |
Kutzelnigg W, Fleischer U and Schindler M 1990 NMR Basic Principles and Progress (Berlin:Springer-Verlag) Vol. 23, p. 165
|
[44] |
Bagus P S 1965 Phys. Rev. 139 A619
|
[45] |
Triguero L, Plashkevych O, Pettersson L G M and Ågren H 1999 J. Electron Spectrosc. Relat. Phenom. 104 195
|
[46] |
Triguero L, Pettersson L G M and Ågren H 1998 Phys. Rev. B 58 8097
|
[47] |
Barth U V and Grossmann G 1979 Solid State Commun. 32 645
|
[48] |
Barth U V and Grossmann G 1982 Phys. Rev. B 25 5150
|
[49] |
Privalov T, Gel'mukhanov F and Ågren H 2001 Phys. Rev. B 64 165116
|
[50] |
Privalov T, Gel'mukhanov F and Ågren H 2001 Phys. Rev. B 64 165115
|
[51] |
Stöhr J 1992 NEXAFS Spectroscopy (Berlin:Springer Verlag)
|
[52] |
Langhoff P W and Corcoran C T 1974 J. Chem. Phys. 61 146
|
[53] |
Langhoff P W, Corcoran C T, Sims J S, Weinhold F and Glover R M 1976 Phys. Rev. A 14 1042
|
[54] |
Langhoff P W 1979 Electron-Molecule and Photon-Molecule Collisions (Rescigno T, McKoy V and Schneider B, Ed.) (Boston:Springer) pp. 183-224
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|