CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures |
Yang-Ping Wang(汪样平)1,2, Fu-Fu Liu(刘福福)1,2, Cai Zhou(周偲)3, Chang-Jun Jiang(蒋长军)1,2 |
1 Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China; 3 Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan 430202, China |
|
|
Abstract We report a tunable transverse magnetoresistance of the planar Hall effect (PHE), up to 48% in the Ni80Fe20/HfO2 heterostructures. This control is achieved by applying a gate voltage with an ionic liquid technique at ultra-low voltage, which exhibits a gate-dependent PHE. Moreover, in the range of 0-V to 1-V gate voltage, transverse magnetoresistance of PHE can be continuously regulated. Ferromagnetic resonance (FMR) also demonstrates the shift of the resonance field at low gate voltage. This provides a new method for the design of the electric field continuous control spintronics device with ultra-low energy consumption.
|
Received: 03 March 2020
Revised: 23 April 2020
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.90.+w
|
(Other topics in magnetic properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671099 and 11974149), the Open Foundation Project of Jiangsu Key Laboratory of Thin Films (Grant No. KJS1745), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT-16R35), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Chang-Jun Jiang
E-mail: jiangchj@lzu.edu.cn
|
Cite this article:
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军) Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures 2020 Chin. Phys. B 29 077507
|
[1] |
Ejsing L, Hansen M F, Menon A K, Ferreira H A, Graham D L and Freitas P P 2018 Chin. Phys. B 27 097505
|
[2] |
Hung T Q, Oh S, Jeong J R and Kim C 2010 Sens. Actuators A: Phys. 157 42
|
[3] |
Oboril F, Bishnoi R, Ebrahimi M and Tahoori M B 2015 IEEE TCAD. 34 367
|
[4] |
Telepinsky Y, Sinwani O, Mor V and Klein M L 2016 J. Appl. Phys. 119 083902
|
[5] |
Yin G, Yu J X, Liu Y, Lake R K, Zang J and Wang K L 2019 Phys. Rev. Lett. 122 106602
|
[6] |
Campbell I A, Fert A and Jaoul O 1970 J. Phys. C: Solid State Phys. 3 S95
|
[7] |
Kojima T, Ogiwara M, Mizuguchi M, Kotsugi M, Koganezawa T, Ohtsuki T, Tashiro T Y and Takanashi K 2014 J. Phys.: Condens. Matter 26 064207
|
[8] |
Laukhin V, Skumryev V, Marti X, Hrabovsky D, Sanchez F, GarciaCuenca M V, Ferrater C, Varela M, Luders U, Bobo J F and Fontcuberta J 2006 Phys. Rev. Lett. 97 227201
|
[9] |
Liu M, Li S, Obi O, Lou J, Rand S and Sun N X 2011 Appl. Phys. Lett. 98 222509
|
[10] |
Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
|
[11] |
Li Q,Wang D H,Cao Q Q,Du Y W 2017 Chin. Phys. B 26 097502
|
[12] |
Zhao X E, Hu Z Q, Yang Q, Peng B, Zhou Z Y and Liu M 2018 Chin. Phys. B 27 097505
|
[13] |
Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y and Tokura Y 2012 Nature 487 459
|
[14] |
Zhao S, Wang L, Zhou Z, Li C, Dong G, Zhang L, Peng B, Min T, Hu Z, Ma J, Ren W, Ye Z G, Chen W, Yu P, Nan C W and Liu M 2018 Adv. Mater. 30 e1801639
|
[15] |
Zheng L M, Wang X R, LüW M, Li C J, Paudel T R, Liu Z Q, Huang Z, Zeng S W, Han K, Chen Z H, Qiu X P, Li M S, Yang S, Yang B, Chisholm M F, Martin L W, Pennycook S J, Tsymbal E Y, Coey J M D and Cao W W 2018 Nat. Commun. 9 1897
|
[16] |
Yan Y N, Zhou X J, Li F, Cui B, Wang Y Y, Wang G Y, Pan F and Song C 2015 Appl. Phys. Lett. 107 122407
|
[17] |
Lu C and Liu J M 2019 Adv. Mater. 1904508
|
[18] |
Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
|
[19] |
Thompson D, Romankiw L and Mayadas A F 1975 IEEE Trans. Mag. 11 1039
|
[20] |
Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
|
[21] |
Song C, Cui B, Peng J, Mao H and Pan F 2016 Chin. Phys. B 25 067502
|
[22] |
Jiang M, Chen X Z, Zhou X J, Cui B, Yan Y N, Wu H Q, Pan F and Song C 2016 Appl. Phys. Lett. 108 202404
|
[23] |
Weyl A and Janke D 1996 J. Am. Ceram. Soc. 79 2145
|
[24] |
Kita K, Kyuno K and Toriumi A 2005 Appl. Phys. Lett. 86 102906
|
[25] |
Bisri S Z, Shimizu S, Nakano M and Iwasa Y 2017 Adv. Mater. 29 1607054
|
[26] |
Wang Y, Liu F, Cao C, Zhou C, Chai G and Jiang C 2019 J. Magn. Magn. Mater. 491 165626
|
[27] |
Wang C, Zhang H, Li C, He Y, Zhang L, Zhao X, Yang Q, Xian D, Mao Q, Peng B, Zhou Z, Cui W and Hu Z 2018 ACS Appl. Mater. Inter. 10 29750
|
[28] |
Yan Y N, Zhou X J, Li F, Cui B, Wang Y Y, Wang G Y, Pan F and Song C 2015 Appl. Phys. Lett. 107 122407
|
[29] |
Bauer U, Emori S and Beach G S 2013 Nat. Nanotechnol. 8 411
|
[30] |
Zhou C, Shen L, Liu M, Gao C, Jia C and Jiang C 2018 Phys. Rev. Appl. 9 014006
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|