CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain |
Xing-Yi Tan(谭兴毅)1, Li-Li Liu(刘利利)1, Da-Hua Ren(任达华)2 |
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China; 2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China |
|
|
Abstract Van der Waals (vdW) heterostructures have attracted significant attention because of their widespread applications in nanoscale devices. In the present work, we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory (DFT). The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a [-1, -0.6] V/Å range, while it is a direct semiconductor in a [-0.5, 0.2] V/Å range, and it is an indirect semiconductor in a [0.3, 1.0] V/Å range. Interestingly, the band alignment of germanane/antimonene vdW heterostructure appears as type-Ⅱ feature both in a [-0.5, 0.1] range and in a [0.3, 1] V/Å range, while it shows the type-I character at 0.2 V/Å. In addition, we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of [-5%, -3%] and in an in-plane biaxial strain range of [3%, 5%], while it exhibits a direct semiconductor character in an in-plane biaxial strain range of [-2%, 2%]. Furthermore, the band alignment of the germanane/antimonene vdW heterostructure changes from type-Ⅱ to type-I at an in-plane biaxial strain of -3%. The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.
|
Received: 03 March 2020
Revised: 13 April 2020
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011). |
Corresponding Authors:
Xing-Yi Tan
E-mail: tanxy@sanxiau.edu.cn
|
Cite this article:
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华) Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain 2020 Chin. Phys. B 29 076102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A and Abellán G 2016 Angew. Chem. Int. Edit. 55 14345
|
[3] |
Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
|
[4] |
Singh D, Gupta S K, Sonvane Y and Lukačević I 2016 J. Mater. Chem. C 4 6386
|
[5] |
Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Edit. 54 3112
|
[6] |
Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414
|
[7] |
Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
|
[8] |
Madhushankar B, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G, Van Der Wal C and Van Wees B 2017 2D Mater. 4 021009
|
[9] |
Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867
|
[10] |
Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
|
[11] |
Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113
|
[12] |
Guo Y, Dai J, Zhao J, Wu C, Li D, Zhang L, Ning W, Tian M, Zeng X C and Xie Y 2014 Phys. Rev. Lett. 113 157202
|
[13] |
Li S L, Tsukagoshi K, Orgiu E and Samorí P 2016 Chem. Soc. Rev. 45 118
|
[14] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[15] |
Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
|
[16] |
Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
|
[17] |
Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
|
[18] |
Preobrajenski A, Nesterov M, Ng M L, Vinogradov A and Mårtensson N 2007 Chem. Phys. Lett. 446 119
|
[19] |
Schedin F, Geim A K, Morozov S V, Hill E, Blake P, Katsnelson M and Novoselov K S 2007 Nat. Mater. 6 652
|
[20] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[21] |
Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
|
[22] |
Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
|
[23] |
Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170
|
[24] |
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6332
|
[25] |
Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
|
[26] |
Fortin-Deschênes M, Waller O, Mentes T, Locatelli A, Mukherjee S, Genuzio F, Levesque P, Hébert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
|
[27] |
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L and Zhu S Y 2017 Adv. Mater. 29 1605407
|
[28] |
Wang G, Pandey R and Karna S P 2015 ACS Appl. Mater. Inte. 7 11490
|
[29] |
Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
|
[30] |
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6515
|
[31] |
Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 12585
|
[32] |
Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627
|
[33] |
Wang N, Cao D, Wang J, Liang P, Chen X and Shu H 2017 J. Mater. Chem. C 5 9687
|
[34] |
Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W and Wu Z 2018 Carbon 129 738
|
[35] |
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
|
[36] |
Ghosh R K, Brahma M and Mahapatra S 2014 IEEE T. Electron. Dev. 61 2309
|
[37] |
Li Y and Chen Z 2014 J. Phys. Chem. C 118 1148
|
[38] |
Zhang R W, Zhang C W, Ji W X, Li F, Ren M J, Li P, Yuan M and Wang P J 2015 Phys. Chem. Chem. Phys. 17 12194
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[41] |
Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[42] |
ToolKit A 2014 S http://www.quantumwise.com
|
[43] |
Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[44] |
Garcia J C, De Lima D B, Assali L V and Justo J F 2011 J. Phys. Chem. C 115 13242
|
[45] |
Lu H, Gao J, Hu Z and Shao X 2016 RSC Adv. 6 102724
|
[46] |
Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C and Sun X 2016 J. Mater. Chem. C 4 5434
|
[47] |
Wang S and Yu J 2018 Thin Solid Films 654 107
|
[48] |
Wang S and Yu J 2018 Appl. Phys. A 124 487
|
[49] |
Guo X, Li D and Xi L 2018 Chin. Phys. B 27 097506
|
[50] |
Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
|
[51] |
Wang S K and Jun W 2015 Chin. Phys. B 24 037202
|
[52] |
Zhang L, He D W and He J Q 2019 Chin. Phys. B 28 087201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|