Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076101    DOI: 10.1088/1674-1056/ab8abe
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2

Wen-Xuan Wang(王文轩)1, Zhen-Yi Jiang(姜振益)1, Yan-Ming Lin(林彦明)1, Ji-Ming Zheng(郑继明)1, Zhi-Yong Zhang(张志勇)1,2
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Stanford Research Computing Center, Stanford University, Stanford, California 94305, USA
Abstract  The martensitic-type phase transformation paths from the rutile to the α-PbO2 phase of TiO2 are studied with linear interpolation and NEB/G-SSNEB methods based on first-principles calculations. Its potential energy surface and the lowest energy path are revealed. Our results indicate that the titanium atoms of the rutile phase shuffle along the [0-11]rut crystal direction to form the α-PbO2 phase. During the phase transition, the oxygen atoms are dragged by the heavier titanium atoms and then reach their new equilibrium positions. The barrier of phase transition from nudged elastic band theory is about 231 meV, which is qualitatively consistent with previous theoretical calculations from the monoclinic phase to the tetragonal phase for ZrO2 and HfO2. Debye model can also be successfully used to predict the pressure and temperature of the phase transformation.
Keywords:  phase transition      transition barrier      Debye's theory      NEB method  
Received:  11 February 2020      Revised:  14 March 2020      Accepted manuscript online: 
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  64.70.K-  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872227, 51572219, and 11447030).
Corresponding Authors:  Zhen-Yi Jiang     E-mail:  jiangzhenyi@nwu.edu.cn

Cite this article: 

Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇) Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2 2020 Chin. Phys. B 29 076101

[1] Li Y L, Zhong G H and Zeng Z 2009 Chin. Phys. B 18 4437
[2] Zhao W J, Xu H B and Wang Y X 2010 Chin. Phys. B 19 016201
[3] Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103
[4] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 Chin. Phys. B 21 076103
[5] McMillan P F 2002 Nat. Mater. 1 19
[6] Arpita Aparajita A N, Sanjay Kumar N R, Chandra S, Amirthapandian S, Chandra Shekar N V and Sridhar K 2018 Inorg. Chem. 57 14178
[7] Dubrovinsky L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B and Johansson B 2001 Nature 410 653
[8] Giarola M, Sanson A, Monti F and Mariotto G 2010 Phys. Rev. B 81 174305
[9] Spektor K, Tran D T, Leinenweber K and Häussermann U 2013 J. Solid State Chem. 206 209
[10] Mcqueen R G, Jamieson J C and Marsh S P 1967 Science 155 1401
[11] Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O and Kusaba K 1991 Science 251 786
[12] Dubrovinskaia N A, Dubrovinsky L S, Ahuja R, Prokopenko V B, Dmitriev V, Weber H P, Osorio-Guillen J M and Johansson B 2001 Phys. Rev. Lett. 87 275501
[13] Hwang S L, Shen P, Chu H T and Yui T F 2000 Science 288 321
[14] Blochl P E 1994 Phys. Rev. B 50 17953
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[17] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[18] Fang Z J and Shi L J 2008 Phys. Lett. A 372 3759
[19] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[20] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[21] Sheppard D, Xiao P, Chemelewski W, Johnson D D and Henkelman G 2012 J. Chem. Phys. 136 074103
[22] Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
[23] Flank A M, Lagarde P, Itié J, Polian P A and Hearne G R 2008 Phys. Rev. B 77 224112
[24] Cai Y Q, Zhang C and Yuan P F 2011 Phys. Rev. B 84 094107
[25] Nicol M and Fong M Y 1971 J. Chem. Phys. 54 3167
[26] Luo X H, Zhou W, Ushakov S V, Navrotsky A and Demkov A A 2009 Phys. Rev. B 80 134119
[27] Jamieson J C and Olinger B 1968 Science 161 893
[28] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 269
[29] Tang J and Endo S 1993 J. Am. Ceram. Soc. 76 796
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!