Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078103    DOI: 10.1088/1674-1056/ab8a38

Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation

Minru Wen(文敏儒)1, Xing Xie(谢兴)1, Huafeng Dong(董华锋)1, Fugen Wu(吴福根)2, Chong-Yu Wang(王崇愚)3
1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The site occupancy behavior of ternary alloying elements in γ'-Ni3Al (a key strengthening phase of commercial Ni-based single-crystal superalloys) can change with temperature and alloy composition owing to the effect of entropy. Using a total-energy method based on density functional theory, the dependence of tensile and shear behaviors on the site preference of alloying elements in γ'-Ni3Al were investigated in detail. Our results demonstrate that Fe, Ru, and Ir can significantly improve the ideal tensile and shear strength of the γ' phase when occupying the Al site, with Ru resulting in the strongest enhancement. In contrast, elements with fully filled d orbitals (i.e., Cu, Zn, Ag, and Cd) are expected to reduce the ideal tensile and shear strength. The calculated stress-strain relationships of Ni3Al alloys indicate that none of the alloying elements can simultaneously increase the ideal strength of the γ' phase for both Ni1-site and Ni2-site substitutions. In addition, the charge redistribution and the bond length of the alloying elements and host atoms during the tensile and shear processes are analyzed to unveil the underlying electronic mechanisms.
Keywords:  stress-strain relations      transition-metal elements      γ'-Ni3Al      first-principles calculations  
Received:  12 February 2020      Revised:  08 April 2020      Accepted manuscript online: 
PACS:  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  71.20.Be (Transition metals and alloys) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804057), the Natural Science Foundation of Guangdong Province, China (Grant No. 2017B030306003), and the National Key Research and Development Program of China (Grant No. 2017YFB0701500).
Corresponding Authors:  Huafeng Dong, Chong-Yu Wang     E-mail:;

Cite this article: 

Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚) Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation 2020 Chin. Phys. B 29 078103

[1] Sims C T, Stoloff N S and Hagel W C 1987 Superalloys Ⅱ (New York: John Wiley & Sons)
[2] Reed R C 2006 The superalloys: fundamentals and applications (New York: Cambridge university Press)
[3] Loria E A 1989 Superalloy 718: metallurgy and applications (Warrendale, PA: TMS) p. 1989
[4] Karnthaler H, Mühlbacher E T and Rentenberger C 1996 Acta Materialia 44 547
[5] Pollock T M and Tin S 2006 J. Propulsion Power 22 361
[6] Reed R, Tao T and Warnken N 2009 Acta Mater. 57 5898
[7] Nathal M and Ebert L 1985 Metall. Trans. A 16 1863
[8] Fleischmann E, Miller M K, Affeldt E and Glatzel U 2015 Acta Mater. 87 350
[9] Yeh A C and Tin S 2005 Scr. Materialia 52 519
[10] Fahrmann M, Hermann W, Fahrmann E, Boegli A, Pollock T and Sockel H 1999 Mater. Sci. Eng. A 260 212
[11] Liu Z and Gao W 2001 Oxidation Metals 55 481
[12] Ruban A V and Skriver H L 1997 Phys. Rev. B 55 856
[13] Jiang C and Gleeson B 2006 Scr. Materialia 55 433
[14] Jiang C, Sordelet D and Gleeson B 2006 Acta Mater. 54 1147
[15] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D and Rösler J 2002 Scr. Mater. 46 235
[16] Mottura A, Warnken N, Miller M K, Finnis M W and Reed R C 2010 Acta Mater. 58 931
[17] Reed R C, Yeh A C, Tin S, Babu S S and Miller M K 2004 Scr. Materialia 51 327
[18] Zhou Y, Mao Z, Booth-Morrison C and Seidman D N 2008 Appl. Phys. Lett. 93 171905
[19] Amouyal Y, Mao Z, Booth-Morrison C and Seidman D N 2009 Appl. Phys. Lett. 94 041917
[20] Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P and Reed R C 2017 Acta Mater. 125 156
[21] Lin H and Pope D P 1990 J. Mater. Res. 5 763
[22] Ochial S, Oya Y and Suzuki T 1984 Acta Metall. 32 289
[23] Wu Y P, Tso N C, Sanchez J M and Tien J K 1989 Acta Metall. 37 2835
[24] Sluiter M H F and Kawazoe Y 1995 Phys. Rev. B 51 4062
[25] Ruban A V and Skriver H L 1996 Solid State Commun. 99 813
[26] Kim D E, Shang S L and Liu Z K 2010 Intermetallics 18 1163
[27] Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
[28] Ruban A V, Popov V A, Portnoi V K and Bogdanov V I 2014 Philos. Mag. 94 20
[29] Wen M and Wang C Y 2018 Phys. Rev. B 97 024101
[30] Liu S, Li Z and Wang C 2017 Chin. Phys. B 26 093102
[31] Lu B, Wang C Y and Du Z 2018 Chin. Phys. B 27 097102
[32] Wang Y J and Wang C Y 2009 Scr. Mater. 61 197
[33] Wen M and Wang C Y 2016 RSC Adv. 6 77489
[34] Wu X and Wang C 2016 RSC Adv. 6 20551
[35] Chen Y, He S, Yi Z and Peng P 2019 J. Phys. Chem. Solids 131 34
[36] Chen Y, He S, Yi Z and Peng P 2018 Comput. Mater. Sci. 152 408
[37] Heckl A, Neumeier S, Göken M and Singer R 2011 Mater. Sci. Eng. A 528 3435
[38] Tan X, Liu J, Jin T, Hu Z, Hong H, Choi B, Kim I, Jo C and Mangelinck D 2013 Mater. Sci. Eng. A 580 21
[39] Han Y F, Ma W Y, Dong Z Q, Li S S and Gong S K 2008 Superalloys. Pennsylvania PA: TMS 91
[40] Wang C Y, Liu S Y and Han L G 1990 Phys. Rev. B 41 1359
[41] Wagner C and Schottky W 1930 Z. Phys. Chem. B 11 163
[42] Roundy D, Krenn C R, Cohen M L and Morris J W Jr 1999 Phys. Rev. Lett. 82 2713
[43] Roundy D, Krenn C R, Cohen M L and Morris J W Jr 2001 Philos. Mag. A 81 1725
[44] Wen M, Xie X, Gao Y, Dong H, Mu Z, Wu F and Wang C Y 2019 J. Alloys Compd. 806 1260
[45] Clatterbuck D M, Krenn C R, Cohen M L and Morris J W Jr 2003 Phys. Rev. Lett. 91 135501
[46] Dubois S M M, Rignanese G M, Pardoen T and Charlier J C 2006 Phys. Rev. B 74 235203
[47] Řehák P, Černý M and Šob M 2015 Modell. Simul. Mater. Sci. Eng. 23 055010
[48] Wen M and Wang C Y 2017 Chin. Phys. B 26 093106
[49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[50] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[52] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[53] Kelly A and Macmillan N 1986 Strong Solids (Oxford: Clarendon)
[54] Clatterbuck D M, Chrzan D C and Morris J W 2003 Acta Mater. 51 2271
[55] Jokl M, Vitek V and McMahon C Jr 1980 Acta Metall. 28 1479
[56] Krenn C R, Roundy D, Morris J W and Cohen M L 2001 Mater. Sci. Eng. A 319 111
[57] Chrzan D C, Sherburne M P, Hanlumyuang Y, Li T and Morris J W Jr 2010 Phys. Rev. B 82 184202
[58] Sawyer C A, Morris J W Jr and Chrzan D C 2013 Phys. Rev. B 87 134106
[59] Joos B and Duesbery M 1997 Phys. Rev. Lett. 78 266
[60] Tian S, Wu J, Shu D, Su Y, Yu H and Qian B 2014 Mater. Sci. Eng. A 616 260
[61] Pokluda J, Černý M, Šob M and Umeno Y 2015 Prog. Mater. Sci. 73 127
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!