Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078104    DOI: 10.1088/1674-1056/ab8abb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy

Qingyu Zhang(张庆宇)1,2, Dongke Sun(孙东科)3, Shunhu Zhang(章顺虎)1, Hui Wang(王辉)4, Mingfang Zhu(朱鸣芳)2
1 Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China;
2 Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
3 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
4 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  We simulate the evolution of hydrogen concentration and gas pore formation as equiaxed dendrites grow during solidification of a hypoeutectic aluminum-silicon (Al-Si) alloy. The applied lattice Boltzmann-cellular automaton-finite difference model incorporates the physical mechanisms of solute and hydrogen partitioning on the solid/liquid interface, as well as the transports of solute and hydrogen. After the quantitative validation by the simulation of capillary intrusion, the model is utilized to investigate the growth of the equiaxed dendrites and hydrogen porosity formation for an Al-(5 wt.%)Si alloy under different solidification conditions. The simulation data reveal that the gas pores favorably nucleate in the corners surrounded by the nearby dendrite arms. Then, the gas pores grow in a competitive mode. With the cooling rate increasing, the competition among different growing gas pores is found to be hindered, which accordingly increases the pore number density in the final solidification microstructure. In the late solidification stage, even though the solid fraction is increasing, the mean concentration of hydrogen in the residue melt tends to be constant, corresponding to a dynamic equilibrium state of hydrogen concentration in liquid. As the cooling rate increases or the initial hydrogen concentration decreases, the temperature of gas pore nucleation, the porosity fraction, and the mean porosity size decrease, whilst the mean hydrogen concentration in liquid increases in the late solidification stage. The simulated data present identical trends with the experimental results reported in literature.
Keywords:  microporosity      solidification microstructure      modeling      lattice Boltzmann method  
Received:  23 December 2019      Revised:  04 March 2020      Accepted manuscript online: 
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  47.55.D- (Drops and bubbles)  
  47.61.Jd (Multiphase flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51901148), the Fund of the State Key Laboratory of Solidification Processing (Northwestern Polytechnical University), China (Grant No. SKLSP202006), and the State Key Lab of Advanced Metals and Materials (University of Science and Technology Beijing), China (Grant No. 2019-Z15).
Corresponding Authors:  Qingyu Zhang, Mingfang Zhu     E-mail:  qingyu.zhang@suda.edu.cn;zhumf@seu.edu.cn

Cite this article: 

Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳) Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy 2020 Chin. Phys. B 29 078104

[1] Kurz W, Fisher D J and Trivedi R 2019 Inter. Mater. Rev. 64 311
[2] Ding Z, Hu Q, Lu W, Ge X, Cao S, Sun S, Yang T, Xia M and Li J 2019 J. Mater. Sci. Technol. 35 1388
[3] Yamamoto T and Komarov S V 2019 Int. J. Cast Met. Res. 32 266
[4] Stefanescu D M 2005 Int. J. Cast Met. Res. 18 129
[5] Xing H, Wang J, Chen C, Shen Z and Zhao C 2012 J. Cryst. Growth 338 256
[6] Huang W D and Wang L L 2012 Sci. Chin. Technol. Sci. 55 377
[7] Sun S, Hu Q, Lu W, Ding Z, Xia M and Li J 2018 Metall. Mater. Trans. A 49 4429
[8] Khalajzadeh V, Goettsch D D and Beckermann C 2019 Metall. Mater. Trans. A 50 757
[9] Bahmani A, Hatami N, Varahram N, Davami P and Shabani M O 2013 Int. J. Adv. Manuf. Technol. 64 1313
[10] Gao Z M, Jie W Q, Liu Y Q, Zheng Y J and Luo H J 2019 J. Alloy. Compd. 797 514
[11] Bhagavath S, Cai B, Atwood R, Li M, Ghaffari B, Lee P D and Karagadde S 2019 Metall. Mater. Trans. A 50 4891
[12] Gao Z, Jie W, Liu Y and Luo H 2017 Acta Mater. 127 277
[13] Zhu M and Stefanescu D 2007 Acta Mater. 55 1741
[14] Xing H, Ankit K, Dong X, Chen H and Jin K 2018 Int. J. Heat Mass Transfer 117 1107
[15] Xing H, Ji M, Dong X, Wang Y, Zhang L and Li S 2020 Mater. Design 185 108250
[16] Meidani H, Jacot A and Rappaz M 2015 Metall. Mater. Trans. A 46 23
[17] Du L, Wang L, Zheng B and Du H 2016 Comput. Mater. Sci. 114 94
[18] Gu C, Wei Y, Yu F, Liu X and She L 2017 Metall. Mater. Trans. A 48 4314
[19] Savithri S and Sasikumar R 2018 Trans. Indian Inst. Met. 71 2657
[20] Hu Y, Xie J, Liu Z, Ding Q, Zhu W, Zhang J and Zhang W 2018 Comput. Mater. Sci. 142 244
[21] Zhang Q, Wang T, Yao Z and Zhu M 2018 Materialia 4C 211
[22] Chen L, Kang Q, Mu Y, He Y L and Tao W Q 2014 Int. J. Heat Mass Transfer 76 210
[23] Li Q, Luo K H, Kang Q J and Chen Q 2014 Phys. Rev. E 90 053301
[24] Li Q, Yu Y, Zhou P and Yan H J 2018 Appl. Therm. Eng. 132 490
[25] Zhang Q, Sun D, Zhang Y and Zhu M 2014 Langmuir 30 12559
[26] Wu W, Zhu M F, Sun D K, Dai T, Han Q Y and Raabe D 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012103
[27] Sun D, Zhu M, Wang J and Sun B 2016 Int. J. Heat Mass Transfer 94 474
[28] Nabavizadeh S, Eshraghi M and Felicelli S 2019 Appl. Sci. 9 57
[29] Zhang Q, Sun D, Pan S and Zhu M 2020 Int. J. Heat Mass Transfer 146 118838
[30] Chai Z, Sun D, Wang H and Shi B 2018 Int. J. Heat Mass Transfer 122 631
[31] Chai Z, Liang H, Du R and Shi B 2019 SIAM J. Sci. Comput. 41 B746
[32] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[33] Carlson K D, Lin Z and Beckermann C 2007 Metall. Mater. Trans. B 38 541
[34] Samuel A M and Samuel F H 1993 Metall. Trans. A 24 1857
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[3] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[4] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[5] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[6] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[7] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[8] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[9] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[10] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[11] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[12] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[13] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[14] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[15] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
No Suggested Reading articles found!