INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor |
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮) |
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China |
|
|
Abstract The morphology and interface of perovskite film are very important for the performance of perovskite solar cells (PSCs). The quality of perovskite film, fabricated via two-step spin-coating process, is significantly influenced by the morphology and crystallinity of PbI2 film. With the addition of additive dimethyl sulfoxide (DMSO) into the PbI2 precursor, the roughness and trap-state density of perovskite film have been significantly reduced, leading to the excellent contact between perovskite layer and subsequent deposited carrier transport layer. Accordingly, the planar heterojunction PSCs with an architecture of ITO/SnO2/perovskite/PTAA/Ag show an efficiency up to 19.02%. Furthermore, PSCs exhibit promising stability in air with a humidity of ~ 45%, and retain 80% of initial efficiency after being exposed to air for 400 h without any encapsulation.
|
Received: 10 January 2020
Revised: 23 January 2020
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.ff
|
(Performance testing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51673214) and the National Key Research and Development Program of China (Grant No. 2017YFA0206600). |
Corresponding Authors:
Jun-Liang Yang
E-mail: junliang.yang@csu.edu.cn
|
Cite this article:
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮) Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor 2020 Chin. Phys. B 29 048801
|
[1] |
Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 047101
|
[2] |
Liu B, Long M Q, Cai M Q and Yang J L 2018 J. Phys. D: Appl. Phys. 51 105101
|
[3] |
Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802
|
[4] |
Wang C H, Zhang C J, Tong S C, Xia H Y, Wang L J, Xie H P, Gao Y L and Yang J L 2018 J. Phys. D: Appl. Phys. 51 025110
|
[5] |
Chao L F, Xia Y D, Li B X, Xing G C, Chen Y H and Huang W 2019 Chem. 5 995
|
[6] |
Hou Y, Du X Y, Scheiner S, McMeekin D P, Wang Z P, Li N, Killian M S, Chen H W, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger N A, Hirsch A, Schmuki P, Steinrück H P, Fink R H, Halik M, Snaith H J and Brabec C J 2017 Science 358 1192
|
[7] |
Best Research-Cell Efficiency Chart/Photovoltaic Research/NREL October 2019
|
[8] |
Liu B, Long M Q, Cai M Q and Yang J L 2018 Appl. Phys. Lett. 112 043901
|
[9] |
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeurddin M K, Grätzel M and Seok S I 2013 Nat. Photon. 7 486
|
[10] |
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
|
[11] |
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
|
[12] |
Wu Y H, Wang P, Wang S B, Wang Z H, Cai B, Zheng X J, Chen Y, Yuan N Y, Ding J N and Zhang W H 2018 ChemSusChem. 11 837
|
[13] |
Wu H, Zhang C J, Ding K X, Wang L J, Gao Y L and Yang J L 2017 Org. Electron. 45 302
|
[14] |
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
|
[15] |
Xu G Y, Xue R M, Chen W J, Zhang J W, Zhang M Y, Chen H Y, Cui C H, Li H K, Li Y W and Li Y F 2018 Adv. Energy Mater. 8 1703054
|
[16] |
Huang K Q, Li H Y, Zhang Y X, Liu T J, Zhang J, Gao Y L, Peng Y Y, Ding L M and Yang J L 2019 Sol. RRL 3 1800318
|
[17] |
Xiong J, Yang B C, Wu R S, Huang Y L, Sun J, Zhang J, Tao S H, Gao Y L and Yang J L 2016 Org. Electron. 30 30
|
[18] |
Huang F Z, Pascoe A R, Wu W Q, Ku Z L, Peng Y, Zhong J, Caruso R A and Cheng Y B 2017 Adv. Mater. 29 1601715
|
[19] |
Huang K Q, Wang C H, Zhang C J, Tong S C, Li H Y, Liu B, Gao Y X, Dong Y N, Gao Y L, Peng Y Y and Yang J L 2018 Org. Electron. 55 140
|
[20] |
Qin P, Tetreault N, Dar M I, Gao P, McCall K L, Rutter S R, Ogier S D, Forrest N D, Bissett J S, Simms M J, Page A J, Fisher R, Grätzel M and Nazeeruddin M K 2015 Adv. Energy Mater. 5 1400980
|
[21] |
Wu C G, Chiang C H, Tseng Z L, Nazeeruddin M K, Hagfeldt A and Grätzel M 2015 Energy Environ. Sci. 8 2725
|
[22] |
Chiang C H and Wu C G 2016 Nat. Photon. 10 196
|
[23] |
Liang P W, Liao C Y, Chueh C C, Zuo F, Spencer T, Xu K X, Lin J J and Alex J Y 2014 Adv. Mater. 26 3748
|
[24] |
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
|
[25] |
Yang L J, Wang J and Leung W W F 2015 ACS Appl. Mater. Interfaces 7 14614
|
[26] |
Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q and Han L Y 2014 Energy Environ. Sci. 7 2934
|
[27] |
Jiang Q, Chu Z M, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W and You J B 2017 Adv. Mate. 29 1703852
|
[28] |
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
|
[29] |
Wakamiya A, Endo M, Sasamori T, Tokitoh N, Ogomi Y, Hayase S Z and Murata Y 2014 Chem. Lett. 43 711
|
[30] |
Yi C Y, Li X, Luo J S, Zakeeruddin S M and Grätzel M 2016 Adv. Mater. 28 2964
|
[31] |
Peng Y Y, Cheng Y D, Wang C H, Zhang C J, Xia H Y, Huang K Q, Tong S C, Hao X T and Yang J L 2018 Org. Electron. 58 153
|
[32] |
Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S and Yang Y 2014 Nano Lett. 14 4158
|
[33] |
Jacobsson T J, Correa-Baena J P, Anaraki E H, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H and Hagfeldt A 2016 J. Am. Chem. Soc. 138 10331
|
[34] |
Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D and Han L Y 2018 Joule 2 296
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|