Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048801    DOI: 10.1088/1674-1056/ab7744
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor

Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮)
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  The morphology and interface of perovskite film are very important for the performance of perovskite solar cells (PSCs). The quality of perovskite film, fabricated via two-step spin-coating process, is significantly influenced by the morphology and crystallinity of PbI2 film. With the addition of additive dimethyl sulfoxide (DMSO) into the PbI2 precursor, the roughness and trap-state density of perovskite film have been significantly reduced, leading to the excellent contact between perovskite layer and subsequent deposited carrier transport layer. Accordingly, the planar heterojunction PSCs with an architecture of ITO/SnO2/perovskite/PTAA/Ag show an efficiency up to 19.02%. Furthermore, PSCs exhibit promising stability in air with a humidity of ~ 45%, and retain 80% of initial efficiency after being exposed to air for 400 h without any encapsulation.
Keywords:  perovskite solar cells      planar heterojunction      interface      PbI2-DMSO complex  
Received:  10 January 2020      Revised:  23 January 2020      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.ff (Performance testing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51673214) and the National Key Research and Development Program of China (Grant No. 2017YFA0206600).
Corresponding Authors:  Jun-Liang Yang     E-mail:  junliang.yang@csu.edu.cn

Cite this article: 

Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮) Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor 2020 Chin. Phys. B 29 048801

[1] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 047101
[2] Liu B, Long M Q, Cai M Q and Yang J L 2018 J. Phys. D: Appl. Phys. 51 105101
[3] Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802
[4] Wang C H, Zhang C J, Tong S C, Xia H Y, Wang L J, Xie H P, Gao Y L and Yang J L 2018 J. Phys. D: Appl. Phys. 51 025110
[5] Chao L F, Xia Y D, Li B X, Xing G C, Chen Y H and Huang W 2019 Chem. 5 995
[6] Hou Y, Du X Y, Scheiner S, McMeekin D P, Wang Z P, Li N, Killian M S, Chen H W, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger N A, Hirsch A, Schmuki P, Steinrück H P, Fink R H, Halik M, Snaith H J and Brabec C J 2017 Science 358 1192
[7] Best Research-Cell Efficiency Chart/Photovoltaic Research/NREL October 2019
[8] Liu B, Long M Q, Cai M Q and Yang J L 2018 Appl. Phys. Lett. 112 043901
[9] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeurddin M K, Grätzel M and Seok S I 2013 Nat. Photon. 7 486
[10] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[11] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
[12] Wu Y H, Wang P, Wang S B, Wang Z H, Cai B, Zheng X J, Chen Y, Yuan N Y, Ding J N and Zhang W H 2018 ChemSusChem. 11 837
[13] Wu H, Zhang C J, Ding K X, Wang L J, Gao Y L and Yang J L 2017 Org. Electron. 45 302
[14] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[15] Xu G Y, Xue R M, Chen W J, Zhang J W, Zhang M Y, Chen H Y, Cui C H, Li H K, Li Y W and Li Y F 2018 Adv. Energy Mater. 8 1703054
[16] Huang K Q, Li H Y, Zhang Y X, Liu T J, Zhang J, Gao Y L, Peng Y Y, Ding L M and Yang J L 2019 Sol. RRL 3 1800318
[17] Xiong J, Yang B C, Wu R S, Huang Y L, Sun J, Zhang J, Tao S H, Gao Y L and Yang J L 2016 Org. Electron. 30 30
[18] Huang F Z, Pascoe A R, Wu W Q, Ku Z L, Peng Y, Zhong J, Caruso R A and Cheng Y B 2017 Adv. Mater. 29 1601715
[19] Huang K Q, Wang C H, Zhang C J, Tong S C, Li H Y, Liu B, Gao Y X, Dong Y N, Gao Y L, Peng Y Y and Yang J L 2018 Org. Electron. 55 140
[20] Qin P, Tetreault N, Dar M I, Gao P, McCall K L, Rutter S R, Ogier S D, Forrest N D, Bissett J S, Simms M J, Page A J, Fisher R, Grätzel M and Nazeeruddin M K 2015 Adv. Energy Mater. 5 1400980
[21] Wu C G, Chiang C H, Tseng Z L, Nazeeruddin M K, Hagfeldt A and Grätzel M 2015 Energy Environ. Sci. 8 2725
[22] Chiang C H and Wu C G 2016 Nat. Photon. 10 196
[23] Liang P W, Liao C Y, Chueh C C, Zuo F, Spencer T, Xu K X, Lin J J and Alex J Y 2014 Adv. Mater. 26 3748
[24] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[25] Yang L J, Wang J and Leung W W F 2015 ACS Appl. Mater. Interfaces 7 14614
[26] Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q and Han L Y 2014 Energy Environ. Sci. 7 2934
[27] Jiang Q, Chu Z M, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W and You J B 2017 Adv. Mate. 29 1703852
[28] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[29] Wakamiya A, Endo M, Sasamori T, Tokitoh N, Ogomi Y, Hayase S Z and Murata Y 2014 Chem. Lett. 43 711
[30] Yi C Y, Li X, Luo J S, Zakeeruddin S M and Grätzel M 2016 Adv. Mater. 28 2964
[31] Peng Y Y, Cheng Y D, Wang C H, Zhang C J, Xia H Y, Huang K Q, Tong S C, Hao X T and Yang J L 2018 Org. Electron. 58 153
[32] Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S and Yang Y 2014 Nano Lett. 14 4158
[33] Jacobsson T J, Correa-Baena J P, Anaraki E H, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H and Hagfeldt A 2016 J. Am. Chem. Soc. 138 10331
[34] Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D and Han L Y 2018 Joule 2 296
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!