CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination |
Wei-Fan Wang(王伟凡)1,2, Jian-Feng Wang(王建峰)1,2,3, Yu-Min Zhang(张育民)2,3, Teng-Kun Li(李腾坤)1,2, Rui Xiong(熊瑞)2, Ke Xu(徐科)1,2,3 |
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; 2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; 3 Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123, China |
|
|
Abstract The vertical GaN-on-GaN Schottky barrier diode with boron-implanted termination was fabricated and characterized. Compared with the Schottky barrier diode (SBD) without boron-implanted termination, this SBD effectively improved the breakdown voltage from 189 V to 585 V and significantly reduced the reverse leakage current by 105 times. In addition, a high Ion/Ioff ratio of ~108 was achieved by the boron-implanted technology. We used Technology Computer Aided Design (TCAD) to analyze reasons for the improved performance of the SBD with boron-implanted termination. The improved performance of diodes may be attributed to that B+ could confine free carriers to suppress electron field crowding at the edge of the diode, which could improve the breakdown voltage and suppress the reverse leakage current.
|
Received: 07 January 2020
Revised: 07 February 2020
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
51.50.+v
|
(Electrical properties)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0404100) and Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017B010112001). |
Corresponding Authors:
Jian-Feng Wang, Ke Xu
E-mail: jfwang2006@sinano.ac.cn;kxu2006@sinano.ac.cn
|
Cite this article:
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科) Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination 2020 Chin. Phys. B 29 047305
|
[1] |
Pearton S J and Ren F 2000 Adv. Mater. 12 1571
|
[2] |
Yong C, Yugang Z, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
|
[3] |
Wang M J, Yuan L, Chen K J, Xu F J and Shen B 2009 J. Appl. Phys. 105 083519
|
[4] |
Ueda T 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), May 18-21, 2014, Hiroshima, Japan, pp. 2075-2078
|
[5] |
Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
|
[6] |
Kizilyalli I C, Prunty T and Aktas O 2015 IEEE Electron Device Lett. 36 1073
|
[7] |
Wang M and Chen K J 2011 IEEE Trans. Electron. Devices 58 460
|
[8] |
Tapajna M, Hilt O, Bahat-Treidel E, Wurfl J and Kuzmik J 2016 IEEE Electron Device Lett. 37 385
|
[9] |
Yang S, Han S, Li R and Sheng K 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 13-17, 2018, Chicago, IL, USA, pp. 272-275
|
[10] |
Bolotnikov A V, Muzykov P G, Zhang Q, Agarwal A K and Sudarshan T S 2010 IEEE Trans. Electron. Devices 57 1930
|
[11] |
Sung W, Van Brunt E, Baliga B J and Huang A Q 2011 IEEE Electron Device Lett. 32 880
|
[12] |
Zhang Y, Liu Z, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron Device Lett. 38 1097
|
[13] |
Tanaka N, Hasegawa K, Yasunishi K, Murakami N and Oka T 2015 Appl. Phys. Express 8 071001
|
[14] |
Saitoh Y, Sumiyoshi K, Okada M, Horii T, Miyazaki T, Shiomi H, Ueno M, Katayama K, Kiyama M and Nakamura T 2010 Appl. Phys. Express 3 081001
|
[15] |
Ozbek A M and Baliga B J 2011 IEEE Electron Device Lett. 32 300
|
[16] |
Wang J, Cao L, Xie J, Beam E, McCarthy R, Youtsey C and Fay P 2018 Appl. Phys. Lett. 113 023502
|
[17] |
Addamiano A, Anderson G W, Comas J, Hughes H L and Lucke W 1972 J. Electrochem. Soc. 119 1355
|
[18] |
Itoh A, Kimoto T and Matsunami H 1996 IEEE Electron Device Lett. 17 139
|
[19] |
Suttrop W, Pensl G and Lanig P 1990 Appl. Phys. A 51 231
|
[20] |
Hamaguchi T, Nakajima H, Ito M, Mitomo J, Satou S, Fuutagawa N and Narui H 2016 Jpn. J. Appl. Phys. 55 122101
|
[21] |
Jiang Y, Wang Q P, Tamai K, Li L A, Shinkai S, Miyashita T, Motoyama S I, Wang D J, Ao J P and Ohno Y 2014 Semicond. Sci. Technol. 29 055002
|
[22] |
Jiang Y, Wang Q, Zhang F, Li L, Shinkai S, Wang D and Ao J P 2016 Semicond. Sci. Technol. 31 035019
|
[23] |
Taube A, Kamińska E, Kozubal M, Kaczmarski J, Wojtasiak W, Jasiński J, Borysiewicz M A, Ekielski M, Juchniewicz M, Grochowski J, Myśliwiec M, Dynowska E, Barcz A, Prystawko P, Zajac M, Kucharski R and Piotrowska A 2015 Physica Status Solidi (a) 212 1162
|
[24] |
Jeon J W, Park S H, Jung S Y, Lee S Y, Moon J, Song J O and Seong T Y 2010 Appl. Phys. Lett. 97 092103
|
[25] |
Jang J S, Kim D and Seong T Y 2006 J. Appl. Phys. 99 073704
|
[26] |
Boguslawski P, Briggs E L and Bernholc J 1995 Phys. Rev. B Condens Matter 51 17255
|
[27] |
Fu H, Baranowski I, Huang X, Chen H, Lu Z, Montes J, Zhang X and Zhao Y 2017 IEEE Electron Device Lett. 38 1286
|
[28] |
Schroder D K 2005 Semiconductor material and device characterization (New York: John Wiley & Sons) pp. 129-133
|
[29] |
Hu Z, Nomoto K, Song B, Zhu M, Qi M, Pan M, Gao X, Protasenko V, Jena D and Xing H G 2015 Appl. Phys. Lett. 107 243501
|
[30] |
Suzue K, Mohammad S N, Fan Z F, Kim W, Aktas O, Botchkarev A E and Morkoç H 1996 J. Appl. Phys. 80 4467
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|