|
|
Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110) |
Qi Zheng(郑琦)1,2, Li Huang(黄立)1,2,3,†, Deliang Bao(包德亮)1,2,3,4, Rongting Wu(武荣庭)1,2,3,§, Yan Li(李彦)1,2, Xiao Lin(林晓)2,3,‡, Shixuan Du(杜世萱)1,2,3,5, and Hong-Jun Gao(高鸿钧)1,2,3,5 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The linkage structures between monomers make great influence on the properties of polymers. The synthesis of some special linkage structures can be challenging, which is often overcome by employing special reaction conditions. Here, we build dihydropentalene linkage in poly-naphthalocyanine on Ag(110) surface. Scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) measurements confirm the dihydropentalene linkage structure and a possible formation path with reconstruction steps is proposed. The controlled experiment on Ag(100) surface shows no dihydropentalene structures formed, which indicates the grooved substrate is necessary for the reconstruction. This work provides insights into the surface restricted reactions that can yield special structures in organic polymers.
|
Received: 21 October 2021
Revised: 28 October 2021
Accepted manuscript online: 01 November 2021
|
PACS:
|
82.35.Gh
|
(Polymers on surfaces; adhesion)
|
|
82.35.-x
|
(Polymers: properties; reactions; polymerization)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the National Key Research and Development Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), Chinese Academy of Sciences (Grant Nos. XDB30000000, YSBR-003, and 112111KYSB20160061), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Li Huang, Xiao Lin
E-mail: lhuang@iphy.ac.cn;xlin@ucas.ac.cn
|
Cite this article:
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110) 2022 Chin. Phys. B 31 018202
|
[1] Colson J W and Dichtel W R 2013 Nat. Chem. 5 453 [2] He D, Zhang Y, Wu Q, Xu R, Nan H, Liu J, Yao J, Wang Z, Yuan S, Li Y, Shi Y, Wang J, Ni Z, He L, Miao F, Song F, Xu H, Watanabe K, Taniguchi T, Xu J B and Wang X 2014 Nat. Commun. 5 5162 [3] Sanchez-Sanchez C, Nicolai A, Rossel F, Cai J, Liu J, Feng X, Mullen K, Ruffieux P, Fasel R and Meunier V 2017 J. Am. Chem. Soc. 139 17617 [4] Yang S J, Chua M and Miao Q 2018 J. Mater. Chem. C 6 3651 [5] Grill L, Dyer M, Lafferentz L, Persson M, Peters M V and Hecht S 2007 Nat. Nanotechnol. 2 687 [6] Vasseur G, Abadia M, Miccio L A, Brede J, Garcia-Lekue A, de Oteyza D G, Rogero C, Lobo-Checa J and Ortega J E 2016 J. Am. Chem. Soc. 138 5685 [7] Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y and Loh K P 2017 Nat. Chem. 9 563 [8] Wang W, Shi X, Wang S, Van Hove M A and Lin N 2011 J. Am. Chem. Soc. 133 13264 [9] Ren J, Bao D L, Dong L, Gao L and Wu R 2017 J. Phys. Chem. C 121 21650 [10] Zwaneveld N A A, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D and Porte L 2008 J. Am. Chem. Soc. 130 6678 [11] Ourdjini O, Pawlak R, Abel M, Clair S, Chen L, Bergeon N, Sassi M, Oison V, Debierre J M, Coratger R and Porte L 2011 Phys. Rev. B 84 125421 [12] Zhong Y, Cheng B, Park C, Ray A, Brown S, Mujid F, Lee J U, Zhou H, Suh J, Lee K H, Mannix A J, Kang K, Sibener S J, Muller D A and Park J 2019 Science 366 1379 [13] Yang H, Gao Y, Niu W, Chang X, Huang L, Liu J, Mai Y, Feng X, Du S and Gao H J 2021 Chin. Phys. B 30 077306 [14] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470 [15] Cao Y, Qi J, Zhang Y F, Huang L, Zheng Q, Lin X, Cheng Z, Zhang Y Y, Feng X, Du S, Pantelides S T and Gao H J 2018 Nano Res. 11 6190 [16] Yang H, Cao Y, Gao Y, Fu Y, Huang L, Liu J, Feng X, Du S and Gao H J 2021 Chin. Phys. B 30 056802 [17] Peter Broekmann K H D and Schalley C A 2009 Templates In Chemistry III, Vol. 281 p. 7 [18] Wang H B, Su Y and Chen G 2014 Chin. Phys. B 23 018103 [19] Zhao W, He D W, Wang Y S, Du X and Xin H 2015 Chin. Phys. B 24 047204 [20] He Y, Garnica M, Bischoff F, Ducke J, Bocquet M L, Batzill M, Auwärter W and Barth J V 2016 Nat. Chem. 9 33 [21] Schuler B, Fatayer S, Mohn F, Moll N, Pavlicek N, Meyer G, Pena D and Gross L 2016 Nat. Chem. 8 220 [22] Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X and Gao H J 2012 J. Phys. Chem. C 116 14052 [23] Qi J, Gao Y X, Huang L, Lin X, Dong J J, Du S X and Gao H J 2019 Chin. Phys. B 28 066801 [24] Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M and Gao H J 2007 J. Phys. Chem. C 111 9240 [25] Cheng Z H, Gao L, Deng Z T, Liu Q, Jiang N, Lin X, He X B, Du S X and Gao H J 2007 J. Phys. Chem. C 111 2656 [26] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402 [27] Zhang H G, Sun J T, Low T, Zhang L Z, Pan Y, Liu Q, Mao J H, Zhou H T, Guo H M, Du S X, Guinea F and Gao H J 2011 Phys. Rev. B 84 245436 [28] Ren J, Bao D L, Dong L, Gao L, Wu R, Yan L, Wang A, Yan J, Wang Y, Du S X, Huan Q and Gao H J 2017 Chin. Phys. B 26 086801 [29] Kobayashi N, Nakajima S, Ogata H and Fukuda T 2004 Chem. Eur. J. 10 6294 [30] Liljeroth P, Repp J and Meyer G 2007 Science 317 1203 [31] Huan Q, Jiang Y, Zhang Y Y, Ham U and Ho W 2011 J. Chem. Phys. 135 014705 [32] Pandey R, Kerner R A, Menke S M, Holst J, Josyula K V B and Holmes R J 2013 Org. Electron. 14 804 [33] Yan L H, Wu R T, Bao D L, Ren J H, Zhang Y F, Zhang H G, Huang L, Wang Y L, Du S X, Huan Q and Gao H J 2015 Chin. Phys. B 24 076802 [34] Bao D L, Zhang Y Y, Du S, Pantelides S T and Gao H J 2018 J. Phys. Chem. C 122 6678 [35] Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S and Grill L 2012 Nat. Chem. 4 215 [36] Sun Q, Zhang C, Cai L, Xie L, Tan Q and Xu W 2015 Chem. Commun. 51 2836 [37] Wu R T, Bao D L, Yan L H, Ren J H, Zhang Y F, Zheng Q, Wang Y L, Huan Q, Du S X and Gao H J 2021 Nano Res. 14 4563 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|