Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096804    DOI: 10.1088/1674-1056/ac11e8

Phase transition-induced superstructures of β-Sn films with atomic-scale thickness

Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海)
Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  The ultrathin β-Sn(001) films have attracted tremendous attention owing to its topological superconductivity (TSC), which hosts Majorana bound state (MBSs) for quantum computation. Recently, β-Sn(001) thin films have been successfully fabricated via phase transition engineering. However, the understanding of structural phase transition of β-Sn(001) thin films is still elusive. Here, we report the direct growth of ultrathin β-Sn(001) films epitaxially on the highly oriented pyrolytic graphite (HOPG) substrate and the characterization of intricate structural-transition-induced superstructures. The morphology was obtained by using atomic force microscopy (AFM) and low-temperature scanning tunneling microscopy (STM), indicating a structure-related bilayer-by-bilayer growth mode. The ultrathin β-Sn film was made of multiple domains with various superstructures. Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains. The formation mechanism of these superstructures was further discussed based on the structural phase transition of β to α-Sn at the atomic-scale thickness. Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit, but also paves a way to investigate their structure-sensitive topological properties.
Keywords:  epitaxial growth      β-Sn films      bilayer-by-bilayer      superstructures      structural transition      scanning tunneling microscopy      surface energy  
Received:  13 May 2021      Revised:  09 June 2021      Accepted manuscript online:  07 July 2021
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.55.-a (Thin film structure and morphology)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674045, 61911540074, and 21622304), the Fund from the Ministry of Science and Technology of China (Grant No. 2016YFA0200700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences (Chinese Academy of Sciences) (Grant Nos. XDB30000000 and QYZDB-SSW-SYS031). Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 21XNLG27).
Corresponding Authors:  Zhihai Cheng     E-mail:

Cite this article: 

Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海) Phase transition-induced superstructures of β-Sn films with atomic-scale thickness 2021 Chin. Phys. B 30 096804

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C and Xue Q K 2018 Nat. Phys. 14 344
[4] Falson J, Xu Y, Liao M, Zang Y, Zhu K, Wang C, Zhang Z, Liu H, Duan W, He K, Liu H, Smet J H, Zhang D and Xue Q K 2020 Science 367 1454
[5] Stühler R, Reis F, Müller T, Helbig T, Schwemmer T, Thomale R, Schäfer J and Claessen R 2020 Nat. Phys. 16 47
[6] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[7] Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801
[8] Fakir M S, Ahmad Z and Sulaiman K 2012 Chin. Phys. Lett. 29 126802
[9] Dong J and Ouyang G 2020 Chin. Phys. B 29 086403
[10] Ding C, Liu C, Zhang Q H, Gong G M, Wang H, Liu X Z, Meng F Q, Yang H H, Wu R, Song C L, Li W, He K, Ma X C, Gu L, Wang L L and Xue Q K 2018 Acta Phys. Sin. 67 207415 (in Chinese)
[11] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I and Gozar A 2019 Nat. Nanotechnol. 14 44
[14] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K and Chen L 2017 Phys. Rev. Mater. 1 021001
[15] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[16] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[17] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[18] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[19] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W and Li S C 2020 Nano Lett. 20 8408
[20] Shi Z Q, Li H, Yuan Q Q, Song Y H, Lv Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W and Li S C 2019 Adv. Mater. 31 1806130
[21] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801
[22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287
[23] Du H, Sun X, Liu X, Wu X, Wang J, Tian M, Zhao A, Luo Y, Yang J, Wang B and Hou J G 2016 Nat. Commun. 7 10814
[24] Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002
[25] Zhou D, Meng Q, Si N, Zhou X, Zhai S, Tang Q, Ji Q, Zhou M, Niu T and Fuchs H 2020 ACS Nano 14 2385
[26] Zhang Z M, Zhang W H and Fu Y S 2019 Acta Phys. Sin. 68 226801 (in Chinese)
[27] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[28] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[29] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[30] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G 2018 Nat. Mater. 17 1081
[31] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323
[32] Roldan Cuenya B, Doi M and Keune W 2002 Surf. Sci. 506 33
[33] Wang D T, Esser N, Cardona M and Zegenhagen J 1995 Surf. Sci. 343 31
[34] Xu Y, Tang P and Zhang S C 2015 Phys. Rev. B 92 081112
[35] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[36] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[37] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W and Xue Q K 2019 Nat. Phys. 15 1046
[38] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104
[39] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[40] Gu Q Q, Wan S Y, Yang H and Wen H H 2018 Acta Phys. Sin. 67 207401 (in Chinese)
[41] Eisenstein J 1954 Rev. Mod. Phys. 26 277
[42] Lei C, Chen H and MacDonald A H 2018 Phys. Rev. Lett. 121 227701
[43] Li AM, Lu D, Yang X Y, Zhu Z, Wang G Y, Guan D D, Zheng H, Li Y Y, Liu C, Qian D and Jia J F 2018 Chin. Phys. Lett. 35 066802
[44] Wang L L, Ma X C, Ji S H, Fu Y S, Shen Q T, Jia J F, Kelly K F and Xue Q K 2008 Phys. Rev. B 77 205410
[45] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[46] Cornelius B, Treivish S, Rosenthal Y and Pecht M 2017 Microelectronics Reliability 79 175
[47] Mujica A, Rubio A, Munoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[48] Christensen N E and Methfessel M 1993 Phys. Rev. B 48 5797
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[7] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[8] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[9] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[10] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[11] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[12] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[13] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[14] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[15] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
No Suggested Reading articles found!