CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Phase transition-induced superstructures of β-Sn films with atomic-scale thickness |
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海)† |
Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract The ultrathin β-Sn(001) films have attracted tremendous attention owing to its topological superconductivity (TSC), which hosts Majorana bound state (MBSs) for quantum computation. Recently, β-Sn(001) thin films have been successfully fabricated via phase transition engineering. However, the understanding of structural phase transition of β-Sn(001) thin films is still elusive. Here, we report the direct growth of ultrathin β-Sn(001) films epitaxially on the highly oriented pyrolytic graphite (HOPG) substrate and the characterization of intricate structural-transition-induced superstructures. The morphology was obtained by using atomic force microscopy (AFM) and low-temperature scanning tunneling microscopy (STM), indicating a structure-related bilayer-by-bilayer growth mode. The ultrathin β-Sn film was made of multiple domains with various superstructures. Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains. The formation mechanism of these superstructures was further discussed based on the structural phase transition of β to α-Sn at the atomic-scale thickness. Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit, but also paves a way to investigate their structure-sensitive topological properties.
|
Received: 13 May 2021
Revised: 09 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.65.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674045, 61911540074, and 21622304), the Fund from the Ministry of Science and Technology of China (Grant No. 2016YFA0200700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences (Chinese Academy of Sciences) (Grant Nos. XDB30000000 and QYZDB-SSW-SYS031). Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 21XNLG27). |
Corresponding Authors:
Zhihai Cheng
E-mail: zhihaicheng@ruc.edu.cn
|
Cite this article:
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海) Phase transition-induced superstructures of β-Sn films with atomic-scale thickness 2021 Chin. Phys. B 30 096804
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [3] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C and Xue Q K 2018 Nat. Phys. 14 344 [4] Falson J, Xu Y, Liao M, Zang Y, Zhu K, Wang C, Zhang Z, Liu H, Duan W, He K, Liu H, Smet J H, Zhang D and Xue Q K 2020 Science 367 1454 [5] Stühler R, Reis F, Müller T, Helbig T, Schwemmer T, Thomale R, Schäfer J and Claessen R 2020 Nat. Phys. 16 47 [6] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802 [7] Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801 [8] Fakir M S, Ahmad Z and Sulaiman K 2012 Chin. Phys. Lett. 29 126802 [9] Dong J and Ouyang G 2020 Chin. Phys. B 29 086403 [10] Ding C, Liu C, Zhang Q H, Gong G M, Wang H, Liu X Z, Meng F Q, Yang H H, Wu R, Song C L, Li W, He K, Ma X C, Gu L, Wang L L and Xue Q K 2018 Acta Phys. Sin. 67 207415 (in Chinese) [11] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563 [12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513 [13] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I and Gozar A 2019 Nat. Nanotechnol. 14 44 [14] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K and Chen L 2017 Phys. Rev. Mater. 1 021001 [15] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685 [16] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 [17] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804 [18] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133 [19] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W and Li S C 2020 Nano Lett. 20 8408 [20] Shi Z Q, Li H, Yuan Q Q, Song Y H, Lv Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W and Li S C 2019 Adv. Mater. 31 1806130 [21] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801 [22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287 [23] Du H, Sun X, Liu X, Wu X, Wang J, Tian M, Zhao A, Luo Y, Yang J, Wang B and Hou J G 2016 Nat. Commun. 7 10814 [24] Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002 [25] Zhou D, Meng Q, Si N, Zhou X, Zhai S, Tang Q, Ji Q, Zhou M, Niu T and Fuchs H 2020 ACS Nano 14 2385 [26] Zhang Z M, Zhang W H and Fu Y S 2019 Acta Phys. Sin. 68 226801 (in Chinese) [27] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [28] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [29] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [30] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G 2018 Nat. Mater. 17 1081 [31] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323 [32] Roldan Cuenya B, Doi M and Keune W 2002 Surf. Sci. 506 33 [33] Wang D T, Esser N, Cardona M and Zegenhagen J 1995 Surf. Sci. 343 31 [34] Xu Y, Tang P and Zhang S C 2015 Phys. Rev. B 92 081112 [35] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 [36] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 [37] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W and Xue Q K 2019 Nat. Phys. 15 1046 [38] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104 [39] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811 [40] Gu Q Q, Wan S Y, Yang H and Wen H H 2018 Acta Phys. Sin. 67 207401 (in Chinese) [41] Eisenstein J 1954 Rev. Mod. Phys. 26 277 [42] Lei C, Chen H and MacDonald A H 2018 Phys. Rev. Lett. 121 227701 [43] Li AM, Lu D, Yang X Y, Zhu Z, Wang G Y, Guan D D, Zheng H, Li Y Y, Liu C, Qian D and Jia J F 2018 Chin. Phys. Lett. 35 066802 [44] Wang L L, Ma X C, Ji S H, Fu Y S, Shen Q T, Jia J F, Kelly K F and Xue Q K 2008 Phys. Rev. B 77 205410 [45] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [46] Cornelius B, Treivish S, Rosenthal Y and Pecht M 2017 Microelectronics Reliability 79 175 [47] Mujica A, Rubio A, Munoz A and Needs R J 2003 Rev. Mod. Phys. 75 863 [48] Christensen N E and Methfessel M 1993 Phys. Rev. B 48 5797 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|