CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging |
Jingyuan Zhu(朱静远)1, Sichao Zhang(张思超)1, Shanshan Xie(谢珊珊)1, Chen Xu(徐晨)1, Lijuan Zhang(张丽娟)2, Xulei Tao(陶旭磊)2, Yuqi Ren(任玉琦)2, Yudan Wang(王玉丹)2, Biao Deng(邓彪)2, Renzhong Tai(邰仁忠)2, Yifang Chen(陈宜方)1 |
1 Nanolithography and Application Research Group, State Key Laboratory of Asic and System, School of Information Science and Engineering, Fudan University, Shanghai 200433, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China |
|
|
Abstract High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology. When the outmost zone-width is shrinking down to 50 nm or even below, patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect. The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction (PEC), because of the large variety in the line width. This work develops a new strategy, nicknamed as local proximity effect correction (LPEC), efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction. By this way, 50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated. Their imaging capability in soft (1.3 keV) and hard (9 keV) x-ray, respectively, has been demonstrated in Shanghai Synchrotron Radiation Facility (SSRF) with the resolution of 50 nm. The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.
|
Received: 12 December 2019
Revised: 12 February 2020
Accepted manuscript online:
|
PACS:
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
07.85.-m
|
(X- and γ-ray instruments)
|
|
41.50.+h
|
(X-ray beams and x-ray optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1732104), China Postdoctoral Science Foundation (Grant No. 2017M611443), and Shanghai STCSM2019-11-20 Grant, China (Grant No. 19142202700). |
Corresponding Authors:
Yifang Chen
E-mail: yifangchen@fudan.edu.cn
|
Cite this article:
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方) Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging 2020 Chin. Phys. B 29 047501
|
[1] |
Zhang Y H and Shi J R 2015 Chin. Phys. Lett. 32 37101
|
[2] |
He X M, Zhong W and Du Y W 2018 Acta Phys. Sin. 67 227501 (in Chinese)
|
[3] |
Huang Y H, Jiang D L, Zhang H, Chen Z M and Huang Z R 2017 Acta Phys. Sin. 66 017501 (in Chinese)
|
[4] |
Li J, Zhang H W, Li Y X, Li Q and Qin J F 2012 Acta Phys. Sin. 61 227501 (in Chinese)
|
[5] |
Mehran E, Shayesteh F S and Sheykhan M 2016 Chin. Phys. B 25 107504
|
[6] |
Xie Q, Wang W P, Xie Z, Zhan P, Li Z C and Zhang Z J 2015 Chin. Phys. B 24 057503
|
[7] |
Cai P, Chen H M and Xie J 2014 Chin. Phys. B 23 117504
|
[8] |
Pan D, Wang S L, Wang H L, Yu X Z, Wang X L and Zhao J H 2014 Chin. Phys. Lett. 31 078103
|
[9] |
Meng L R, Chen W M, Chen C P, Zhou H P and Peng Q 2010 Chin. Phys. Lett. 27 128101
|
[10] |
He L Z, Qin L R, Zhao J W, Yin Y Y, Yang Y and Li G Q 2016 Chin. Phys. B 25 086101
|
[11] |
Liu X L, Yang Y, Wu J P, Zhang Y F, Fan H M and Ding J 2015 Chin. Phys. B 24 127505
|
[12] |
Su Y K, Yan Z L, Wu X M, Liu H, Ren X and Yang H T 2015 Chin. Phys. B 24 107505
|
[13] |
Zuo W L, Zhao X, Xiong J F, Shan R X, Zhang M, Hu F X, Sun J R and Shen B G 2015 Chin. Phys. B 24 077103
|
[14] |
Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T and Vogt S 2006 Phys. Rev. Lett. 96 127401
|
[15] |
Sakdinawat A and Attwood D 2010 Nat. Photon. 4 840
|
[16] |
Doring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T and Krebs H U 2013 Opt. Express 21 19311
|
[17] |
Mayer M, Keskinbora K, Grevent C, Szeghalmi A, Knez M, Weigand M, Snigirev A, Snigireva I and Schutz G 2014 J. Synchrotron Radiat. 21 640
|
[18] |
Kamijo N, Suzuki Y, Takano H, Tamura S, Yasumoto M, Takeuchi A and Awaji M 2003 Rev. Sci. Instrum. 74 5101
|
[19] |
Shu J H, Chen Z Y, Pu J X and Liu Y X 2011 Chin. Phys. B 20 114202
|
[20] |
Moldovan N, Divan R, Zeng H J, Ocola L E, De Andrade V and Wojcik M 2018 J. Vac. Sci. Technol. A 36 01A124
|
[21] |
Vila-Comamala J, Jefimovs K, Raabe J, Pilvi T, Fink R H, Senoner M, Maassdorf A, Ritala M and David C 2009 Ultramicroscopy 109 1360
|
[22] |
Vila-Comamala J, Gorelick S, Farm E, Kewish C M, Diaz A, Barrett R, Guzenko V A, Ritala M and David C 2011 Opt. Express 19 175
|
[23] |
Reinspach J, Lindblom M, Bertilson M, Hofsten O v, Hertz H M and Holmberg A 2011 J. Vac. Sci. Technol. B 29 011012
|
[24] |
Feng Y, Feser M, Lyon A, Rishton S, Zeng X H, Chen S, Sassolini S and Yun W B 2007 J. Vac. Sci. Technol. B 25 2004
|
[25] |
Peuker M 2001 Appl. Phys. Lett. 78 2208
|
[26] |
David C, Medenwaldt R, Thieme J, Guttmann P, Rudolph D and Schmahl G 1992 J. Opt. 23 255
|
[27] |
Parfeniukas K, Rahomaki J, Giakoumidis S, Seiboth F, Wittwer F, Schroer C G and Vogt U 2016 Microelectron. Eng. 152 6
|
[28] |
Gorelick S, Vila-Comamala J, Guzenko V A, Barrett R, Salome M and David C 2011 J. Synchrotron Radiat. 18 442
|
[29] |
Chen Y T, Lo T N, Chiu CmW, Wang JnY, Wang C L, Liu C J, Wu S R, Jeng S T, Yang C C, Shiue J, Chen C H, Hwu Y, Yin G C, Lin H M, Je J H and Margaritondo G 2008 J. Synchrotron Radiat. 15 170
|
[30] |
Gorelick S, Vila-Comamala J, Guzenko V A and David C 2011 Microelectron. Eng. 88 2259
|
[31] |
Guzenko V A, Romijn J, Vila-Comamala J, Gorelick S and David C 2011 Aip. Conf. Proc. 1365 92
|
[32] |
Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E and Naulleau P 2012 Opt. Express 20 9777
|
[33] |
Kirz J 1974 J. Opt. Soc. Am. 64 301
|
[34] |
Liu J P, Shao J H, Zhang S C, Ma Y Q, Taksatorn N, Mao C W, Chen Y F, Deng B and Xiao T Q 2015 Appl. Opt. 54 9630
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|