Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038104    DOI: 10.1088/1674-1056/ab74ce
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors

Liu-Hong Ma(马刘红)1,3, Wei-Hua Han(韩伟华)2,3, Fu-Hua Yang(杨富华)3,4
1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.
Keywords:  junctionless nanowire transistor      quantum transport      hopping transport      quantum dot  
Received:  06 November 2019      Revised:  19 January 2020      Accepted manuscript online: 
PACS:  81.07.Gf (Nanowires)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0200503) and the National Natural Science Foundation of China (Grant Nos. 11947115, 61376096, 61327813, and 61404126).
Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华) Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors 2020 Chin. Phys. B 29 038104

[1] Cao Q, Tersoff J, Farmer D B, Zhu Y and Han S J 2017 Science 356 1369
[2] Sun S X, Ma L H, Cheng C, Zhang C, Zhong Y H, Li Y X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700322
[3] Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin. Phys. B 28 078501
[4] Li Y, Yu S M, Hwang J R and Yang F L 2008 IEEE Trans. Electron Devices 55 1449
[5] Shine G and Saraswat K C 2017 IEEE Trans. Electron Devices 64 3768
[6] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid State Electron. 70 92
[7] Moraru D, Samanta A, Tyszka K, Muruganathan M, Mizuno T, Jablonski R, Mizuta H and Tabe M 2015 Nanoscale Res. Lett. 10 372
[8] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotechnol. 7 242
[9] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2009 Nat. Nanotechnol. 5 133
[10] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[11] Uddin W, Georgiev Y M, Maity S and Das S 2017 J. Phys. D: Appl. Phys. 50 365104
[12] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[13] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[14] Moraru D, Ligowski M, Yokoi K, Mizuno T and Tabe M 2013 Appl. Phys. Express 2 071201
[15] Ma L H, Han W H, Zhao X S, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 088106
[16] Lee C W, Borne A, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 IEEE Trans. Electron Devices 57 620
[17] Ghibaudo G 1988 Electron. Lett. 24 543
[18] Ma L H, Han W H, Wang H, Yang X and Yang F H 2015 Chin. Phys. B 24 128101
[19] Jeon D Y, Park S, Mouis M, Berthome M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 90 86
[20] Duarte J P, Kim M S, Choi S J and Choi Y K 2012 IEEE Trans. Electron Devices 59 1008
[21] Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L and Gossard A C 1995 Phys. Rev. Lett. 75 705
[22] Tan K Y, Chan K W, M, Morello A, Yang C, Donkelaar J V, Alves A, Pirkkalainen J M, Jamieson D N, Clark R G and Dzurak A S 2010 Nano Lett. 10 11
[23] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[24] Morgan N Y, Abusch-Magder D, Kastner M A, Takahashi Y, Tamura H and Murase K 2001 J. Appl. Phys. 89 410
[25] Romero H E and Drndic M 2005 Phys. Rev. Lett. 95 156801
[26] Altermatt P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[27] Wang H, Han W H, Ma L H, Li X M, Hong W T and Yang F H 2014 Appl. Phys. Lett. 104 133509
[28] Diarra M, Niquet Y M, Delerue C and Allan G 2007 Phys. Rev. B 75 045301
[29] Björk M T, Schmid H, Knoch J, Riel H and Riess W 2009 Nat. Nanotechnol. 4 103
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!