INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Comparison study of GaN films grown on porous andplanar GaN templates |
Shan Ding(丁姗), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓) |
Key Laboratory of Advanced Photonic&Electronic Materials, School of Electronic Science&Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract The GaN thick films have been grown on porous GaN template and planar metal-organic chemical vapor deposition (MOCVD)-GaN template by halide vapor phase epitaxy (HVPE). The analysis results indicated that the GaN films grown on porous and planar GaN templates under the same growth conditions have similar structural, optical, and electrical properties. But the porous GaN templates could significantly reduce the stress in the HVPE-GaN epilayer and enhance the photoluminescence (PL) intensity. The voids in the porous template were critical for the strain relaxation in the GaN films and the increase of the PL intensity. Thus, the porous GaN converted from β-Ga2O3 film as a novel promising template is suitable for the growth of stress-free GaN films.
|
Received: 24 November 2019
Revised: 10 January 2020
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
83.85.St
|
(Stress relaxation ?)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0404201), the State Key R&D Program of Jiangsu Province, China (Grant No. BE2019103), the Six-Talent Peaks Project of Jiangsu Province, China (Grant No. XCL-107), the Fund from the Solid-state Lighting and Energy-saving Electronics Collaborative Innovation Center, PAPD, and the Fund from the State Grid Shandong Electric Power Company. |
Corresponding Authors:
Xiang-Qian Xiu, Rong Zhang
E-mail: xqxiu@nju.edu.cn;rzhang@nju.edu.cn
|
Cite this article:
Shan Ding(丁姗), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Comparison study of GaN films grown on porous andplanar GaN templates 2020 Chin. Phys. B 29 038103
|
[1] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schuberta E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[2] |
Steigerwald D A, Bhat J C, Collins D, Fletcher R M, Holcomb M O, Ludowise M J, Martin P S and Rudaz S L 2002 IEEE J. Sel. Top. Quantum Electron. 8 310
|
[3] |
Shen L, Heikman S, Moran B, Coffie R, Zhang N Q, Buttari D, Smorchkova I P, Keller S, DenBaars S P and Mishra U K 2001 IEEE Electron Device Lett. 22 457
|
[4] |
Zhang Y H, Dadgar A and Palacios T 2018 J. Phys. D: Appl. Phys. 51 273001
|
[5] |
Liu L and Edgar J H 2002 Mater. Sci. Eng. R-Rep. 37 61
|
[6] |
Kelly M K, Ambacher O, Dimitrov R, Handschuh R and Stutzmann M 1997 Phys. Status Solidi A 159 R3
|
[7] |
Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T and Johnson N M 1999 Appl. Phys. Lett. 75 1360
|
[8] |
Monemar B, Larsson H, Hemmingsson C, Ivanov I G and Gogova D 2005 J. Cryst. Growth 281 17
|
[9] |
Tong X L, Li L, Zhang D S, Dai Y T, Lv D J, Ling K, Liu Z X, Lu P X, Yang G, Yang Z Y and Long H 2009 J. Phys. D-Appl. Phys. 42 045414
|
[10] |
Lipski F, Wunderer T, Schwaiger S and Scholz F 2010 Phys. Status Solidi A 207 1287
|
[11] |
Hartono H, Soh C B, Chow S Y, Chua S J and Fitzgerald E A 2007 Appl. Phys. Lett. 90 171917
|
[12] |
Jang L W, Jeon D W, Polyakov A Y, Govorkov A V, Sokolov V N, Smirnov N B, Cho H S, Yun J H, Shcherbatchev K D, Baek J H and Lee I H 2014 J. Alloy. Compd. 589 507
|
[13] |
Zhang L, Dai Y B, Wu Y Z, Shao Y L, Tian Y, Huo Q, Hao X P, Shen Y N and Hua Z 2014 Crystengcomm 16 9063
|
[14] |
Li Y W, Xiu X Q Xiong Z N, Hua X M, Xie Z L, Tao T, Chen P, Liu B, Zhang R and Zheng Y D 2019 Mater. Lett. 240 121
|
[15] |
Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R and Zheng Y D 2018 Chin. Phys. Lett. 35 58101
|
[16] |
Li Y W, Xiu X Q, Xiong Z N, Hua X M, Xie Z L, Chen P, Liu B, Tao T, Zhang R and Zheng Y D 2019 Crystengcomm 21 1224
|
[17] |
Melnik Y V, Vassilevski K V, Nikitina I P, Babanin A I, Davydov V Y and Dmitriev V A 1997 MRS Int. J. Nitride Semicond. Res. 2 e39
|
[18] |
Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503
|
[19] |
Kushvaha S S, Kumar M S, Shukla A K, Yadav B S, Singh D K, Jewariya M, Ragam S R and Maurya K K 2015 RSC Adv. 5 87818
|
[20] |
Zhao D G, Xu S J, Xie M H, Tong S Y and Yang H 2003 Appl. Phys. Lett. 83 677
|
[21] |
Vajpeyi A P, Tripathy S, Chua S J and Fitzgerald E A 2005 Physica E 28 141
|
[22] |
Ng H M, Doppalapudi D, Moustakas T D, Weimann N G and Eastman L F 1998 Appl. Phys. Lett. 73 821
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|