INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP |
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航) |
Institute of Atomic and Molecular Physics, Jinlin University, Changchun 130012, China |
|
|
Abstract The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine (HPIP) and HPIP's derivatives (5'Br-HPIP and 6'Br-HPIP). And the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods were used to calculate the molecule structures. The calculated results showed that the influence of 5'Br-HPIP on the fluorescence intensity is stronger than that of 6'Br-HPIP. The fluorescence emission peak of 5'Br-HPIP occurred a blue shift compared with HPIP, and 6'Br-HPIP exhibited an opposite red shift. The change of the fluorescence emission peak was attributed to the decrease of the energy gap from 6'Br-HPIP to 5'Br-HPIP. Our work on the substituent position influence could be helpful to design and develop new materials.
|
Received: 10 December 2019
Revised: 13 January 2020
Accepted manuscript online:
|
PACS:
|
82.39.Jn
|
(Charge (electron, proton) transfer in biological systems)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874180 and 11704146) and the Program of Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20190201138TC and 20190103101JH). |
Corresponding Authors:
Ying Shi, Hang Yin
E-mail: shi_ying@jlu.edu.cn;yinhang@jlu.edu.cn
|
Cite this article:
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航) Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP 2020 Chin. Phys. B 29 038201
|
[1] |
Sato T, Jiang D L and Aida T 1999 J. Am. Chem. Soc. 121 10658
|
[2] |
Tong H, Hong Y, Dong Y, Ren Y, Häussler M, Lam J W Y, Wong K S and Tang B Z 2007 J. Phys. Chem. B 111 2000
|
[3] |
Kaiser T E, Wang H, Stepanenko V and Würthner F 2007 Angew. Chem. 119 5637
|
[4] |
Kaiser T E, Wang H, Stepanenko V and Würthner F 2007 Angew. Chem. Int. Ed. 46 5541
|
[5] |
Zhao C H, Wakamiya A, Inukai Y and Yamaguchi S 2006 J. Am. Chem. Soc. 128 15934
|
[6] |
Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D and Ma Y 2005 J. Am. Chem. Soc. 127 14152
|
[7] |
Lupton J M, Hemingway L R, Samuel I D W and Burn P L 2000 J. Mater. Chem. 10 867
|
[8] |
Wang J, Zhao Y, Dou C, Sun H, Xu P, Ye K, Zhang J, Jiang S, Li F and Wang Y 2007 J. Phys. Chem. B 111 5082
|
[9] |
Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D and Tang B Z 2001 Chem. Commun. 18 1740
|
[10] |
Li Y, Li F, Zhang H, Xie Z, Xie W, Xu H, Li B, Shen F, Ye L, Hanif M,Ma D and Ma Y 2007 Chem. Commun. 231
|
[11] |
Wakamiya A, Mori K and Yamaguchi S 2007 Angew. Chem. 119 4351
|
[12] |
Yao H and Funada T 2014 Chem. Commun. 50 2748
|
[13] |
El Nahhas A, Pascher T, Leone L, Panzella L, Napolitano A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2094
|
[14] |
Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
|
[15] |
Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
|
[16] |
Barman S, Mukhopadhyay S K, Biswas S, Nandi S, Gangopadhyay M, Dey S, Anoop A and Singh N D P 2016 Angew. Chem. Int. Ed. 55 4194
|
[17] |
Weller A 1956 Ber. Bunsenges. Phys. Chem. 60 1144
|
[18] |
Han K L and Zhao G J 2011 Hydrogen Bonding and Transfer in the Excited State (Wiley Online Library) p. 464
|
[19] |
Amani T, Jordi M, Ali K and Kaher T 2014 Chin. Phys. B 23 46101
|
[20] |
Zhou P W and Han K L 2018 Acc.Chem. Res. 51 1681
|
[21] |
Zhou P and Zhao L 2018 Int. J. Quantum Chem. 118 e25618
|
[22] |
Sun C F, Su X, Zhou Q and Shi Y 2019 Org. Chem. Front. 6 3093
|
[23] |
Zhao Y, Wang M and Zhou P 2018 J. Phys. Chem. A 122 2864
|
[24] |
Zheng J J, Zhang G L, Guo Y X, Li X P and Chen W J 2007 Chin. Phys. B 16 1047
|
[25] |
Wu F, Lin L, Li X P, Yu Y X, Zhang G L and Chen W J 2008 Chin. Phys. B 17 1461
|
[26] |
Yang D P, Yang G, Zhao J F, Zheng R and Wang Y S 2017 J. Cluster Sci. 28 2449
|
[27] |
Zhou P W, Hoffmann M R, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
|
[28] |
Seo J, Kim S and Park S Y 2004 J. Am. Chem. Soc. 126 11154
|
[29] |
Han J H, Liu X C, Sun C F, Li Y, Hang Y and Shi Y 2018 RSC Adv. 8 29589
|
[30] |
Sun C F, Zhao H F, Liu X C, Yin H and Shi Y 2018 Org. Chem. Frontiers 10 1039
|
[31] |
Sakai K i, Takahashi S, Kobayashi A, Akutagawa T, Nakamura T, Dosen M, Kato M and Nagashima U 2010 Dalton T. 39 1989
|
[32] |
Zhang X and Liu J Y 2016 Dyes Pigments 125 80
|
[33] |
Li Y Q, Yang Y F and Ding Y 2017 Sci. Rep. 7 1574
|
[34] |
Bader A N, Pivovarenko V G, Demchenko A P, Ariese F and Gooijer C 2004 J. Phys. Chem. B 108 10589
|
[35] |
Wang Y, Yin H, Shi Y, Jin M X and Ding D J 2014 New J. Chem. 38 4458
|
[36] |
Zhao J, Chen J, Liu J and Hoffmann M R 2015 Phys. Chem. Chem. Phys. 17 11990
|
[37] |
Yasuhiro S, Toshiki M, Hirohiko Hand Koji A 2012 J. Phys. Chem. A 116 12041
|
[38] |
Mutai T, Sawatani H, Shida T, Shono H and Araki K 2013 J. Org. Chem. 78 2482
|
[39] |
Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision B. 01 (Wallingford: Gaussian, Inc.)
|
[40] |
Yang Y F, Zhao J F and Li Y Q 2016 Sci. Rep. 6 32152
|
[41] |
Zhao J F, Liu X Y and Zheng Y J 2017 J. Phys. Chem. A 121 4002
|
[42] |
Yang D P, Yang Y G and Liu Y F 2014 Spectrochim. Acta Part A 117 379
|
[43] |
Lu T and Chen F W 2012 J. Comput. Chem. 33 580
|
[44] |
https://www.chemcraftprog.com
|
[45] |
Liu X C, Yin H, Li H and Shi Y 2017 Spectrochimica Acta Part A 77 1
|
[46] |
Contreras-Garcia J, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N and Yang W T 2011 J. Chem. Theory Comput. 7 625
|
[47] |
Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Carcia J, Cohen A J and Yang W T 2010 J. Am. Chem. Soc. 132 6498
|
[48] |
Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens Matter 21 084204
|
[49] |
Li C, Yang Y and Liu Y 2017 Phys. Chem. Chem. Phys. 19 4802
|
[50] |
Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
|
[51] |
Jia L F, Wang F and Liu Y F 2018 Org. Electron. 57 292
|
[52] |
Hao J J and Yang Y 2018 Org. Chem. Front. 5 1330
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|