Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026801    DOI: 10.1088/1674-1056/ab6583
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Triphenylene adsorption on Cu(111) and relevant graphene self-assembly

Qiao-Yue Chen(陈乔悦)1, Jun-Jie Song(宋俊杰)3, Liwei Jing(井立威)1, Kaikai Huang(黄凯凯)1, Pimo He(何丕模)1,2, Hanjie Zhang(张寒洁)1
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract  Investigations on adsorption behavior of triphenylene (TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy (STM). At monolayer coverage, TP molecules formed a long-range ordered adsorption structure on Cu(111) with an uniform orientation. Graphene self-assembly on the Cu(111) substrate with TP molecules as precursor was achieved by annealing the sample, and a large-scale graphene overlayer was successfully captured after the sample annealing up to 1000 K. Three different Moiré patterns generated from relative rotational disorders between the graphene overlayer and the Cu(111) substrate were observed, one with 4° rotation between the graphene overlayer and the Cu(111) substrate with a periodicity of 2.93 nm, another with 7° rotation and 2.15 nm of the size of the Moiré supercell, and the third with 10° rotation with a periodicity of 1.35 nm.
Keywords:  triphenylene      graphene      Cu(111)      scanning tunneling microscopy  
Received:  04 November 2019      Revised:  16 December 2019      Accepted manuscript online: 
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (Grant No. 11790313).
Corresponding Authors:  Pimo He, Hanjie Zhang     E-mail:  zhj_fox@zju.edu.cn;phypmhe@zju.edu.cn

Cite this article: 

Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁) Triphenylene adsorption on Cu(111) and relevant graphene self-assembly 2020 Chin. Phys. B 29 026801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704
[3] Forbeaux I, Themlin J M and Debever J M 1998 Phys. Rev. 58 16396
[4] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[5] Zhang X B, Qing F Z and Li X S 2019 Acta Phys. Sin. 68 96801 (in Chinese)
[6] Li J, Gottardi S, Solianyk L, Moreno-López J C and Stöhr M 2016 J. Phys. Chem. C 120 18093
[7] Song J J, Zhang Y X, Zhang H J, Cai Y L, Bao S N and He P M 2016 Appl. Surf. Sci. 367 424
[8] Song J J, Zhang H J, Cai Y L, Zhang Y X, Bao S N and He P M 2015 Nanotechnology 27 055602
[9] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[10] Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nanotechnol. 6 247
[11] Zhu R J, Huang Y H, Li J Y, Kang N and Xu H Q 2019 Chin. Phys. B 28 67201
[12] Fang W, Hsu A L, Song Y and Kong J 2015 Nanoscale 7 20335
[13] Suzuki N, Wang Y, Elvati P, Qu Z B, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng J H, Lee J, Violi A, Kotov N A, Michigan U and Ann Arbor M I 2016 ACS Nano 10 1744
[14] Zhou Z, Gao F and Goodman D W 2010 Surf. Sci. 604 L31
[15] Didar B R, Khosravian H, Balbuena P B, et al. 2018 RSC Adv. 8 27825
[16] Niu T C, Zhou M, Zhang J L, Feng Y P and Chen W 2013 J. Am. Chem. Soc. 135 8409
[17] Batzill M 2012 Surf. Sci. Rep. 67 83
[18] Xu Z and Buehler M J 2010 J. Phys.: Condens. Matter 22 485301
[19] Soy E, Liang Z and Trenary M 2015 J. Phys. Chem. C 119 24796
[20] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[21] Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D, Lim Y J, Yuan Q H, Ding F, Jeong H Y, Shin H S, Lee S M, Chae S H, Vu Q A, Lee S H and Lee Y H 2015 Adv. Mater. 27 1376
[22] Chen X, Liu S Y, Liu L C, Liu X Q, Liu X M and Wang L 2012 Appl. Phys. Lett. 100 163106
[23] Süle P, Szendrő M, Hwang C and Tapasztó L 2014 Carbon 77 1082
[24] Lu B, Zhang H J, Li H Y, Bao S N, He P and Hao T L 2003 Phys. Rev. B 68 125410
[25] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[26] Tonigold K and Groß A 2010 J. Chem. Phys. 132 224701
[27] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 46803
[28] Ge S P, Lu C and Zhao R G 2006 Chin. Phys. Lett. 23 1558
[29] Qi J, Gao Y X, Huang L, Lin X, Dong J J, Du S X and Gao H J 2019 Chin. Phys. B 28 66801
[30] Song Z P, Bao L, Cao Y, Qi J, Peng H, Wang Q, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao J H 2019 Chin. Phys. B 28 56801
[31] Zint S R, Ebeling D, Ahles S, Wegner H A and Schirmeisen A 2016 J. Phys. Chem. C 120 1615
[32] Xu Q M, Han M J, Wan L J, Wang C, Bai C L, Dai B and Yang J L 2003 Chem. Commun. 9 2874
[33] Krüger P, Petukhov M, Domenichini B, Berkó A and Bourgeois S 2012 J. Phys. Chem. C 116 10617
[34] Bilić A, Reimers J R, Hush N S, Hoft R C and Ford M J 2006 J. Chem. Theory Comput. 2 1093
[35] Liu W, Ruiz V G, Zhang G X, Santra B, Ren X, Scheffler M and Tkatchenko A 2013 New J. Phys. 15 53046
[36] Talirz L, Ruffieux P and Fasel R 2016 Adv. Mater. 28 6222
[37] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R and Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[38] Wan X, Chen K, Liu D Q, Chen J, Miao Q and Xu J B 2012 Chem. Mater. 24 3906
[39] Chen K, Wan X, Liu D Q, Kang Z W, Xie W G, Chen J, Miao Q and Xu J B 2013 Nanoscale 5 5784
[40] Cho J, Gao L, Tian J F, Cao H L, Wu W, Yu Q K, Yitamben E N, Fisher B, Guest J R, Chen Y P and Guisinger N P 2011 ACS Nano 5 3607
[41] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
[42] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D and Mei L M 2002 Chin. Phys. Lett. 19 1498
[43] Sidorenkov A V, Kolesnikov S V and Saletsky A M 2016 Eur. Phys. J. B 89 1
[44] He R, Zhao L Y, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A and Pinczuk A 2012 Nano Lett. 12 2408
[45] Hattab H, N'Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
[46] Murata Y, Petrova V, Kappes B B, Ebnonnasir A, Petrov I, Xie Y H, Ciobanu C V and Kodambaka S 2010 ACS Nano 4 6509
[47] Busse C, Lazić P, Djemour R, Coraux J, Gerber T, Atodiresei N, Caciuc V, Brako R, N'Diaye A T, Blügel S, Zegenhagen J and Michely T 2011 Phys. Rev. Lett. 107 036101
[48] Xu W Y, Zhang L Z, Huang L, Que Y D, Wang Y L, Lin X and Du S X 2019 Chin. Phys. B 28 46801
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
No Suggested Reading articles found!