Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117304    DOI: 10.1088/1674-1056/ab478e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topological properties in ABA trilayer graphene underthe irradiation of light

Liang Chen(陈亮)
School of Physics and Electronic Engineering, Taishan University, Taian 271000, China
Abstract  We study ABA trilayer graphene under irradiation of a circularly polarized light. In high-frequency regime, the effective low-energy Hamiltonian is obtained based on the Floquet theory. With increasing circularly polarized light intensity, the band structure shows a band gap closing and reopening, which happen twice. The process of the band gap closing and reopening is accompanied with a topological phase transition. We investigate the Chern numbers and the anomalous Hall conductivities to confirm the topological phase transition. The interplay between light-induced circularity-dependent effective potential and effective sublattice potential is discussed.
Keywords:  graphene      light      Flouqet theory      Hall  
Received:  17 June 2019      Revised:  06 September 2019      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61604106) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014FL025).
Corresponding Authors:  Liang Chen     E-mail:  30750574@163.com

Cite this article: 

Liang Chen(陈亮) Topological properties in ABA trilayer graphene underthe irradiation of light 2019 Chin. Phys. B 28 117304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nat. Phys. 7 621
[4] Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C N 2011 Nat. Phys. 7 948
[5] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944
[6] Lui C H, Ye Z, Keiser C, Barros E B and He R 2015 Appl. Rev. Lett. 106 041904
[7] Asakawa Y, Masubuchi S, Inoue N, Morikawa S, Watanabe K, Taniguchi T and Machida T 2017 Phys. Rev. Lett. 119 186802
[8] Scherer M M, Uebelacker S, Scherer D D and Honerkamp C 2012 Phys. Rev. B 86 155415
[9] Zhang L, Zhang Y, Camacho J, Khodas M and Zaliznyak I 2011 Nat. Phys. 7 953
[10] Jung J and MacDonald A H 2013 Phys. Rev. B 88 075408
[11] Kumar A, Escoffier W, Poumirol J M, Faugeras C, Arovas D P, Fogler M M, Guinea F, Roche S, Goiran M and Raquet B 2011 Phys. Rev. Lett. 107 126806
[12] Stepanov P, Barlas Y, Espiritu T, Che S, Watanabe K, Taniguchi T, Smirnov D and Lau C N 2016 Phys. Rev. Lett. 117 076807
[13] Barlas Y 2018 Phys. Rev. Lett. 121 066602
[14] Chittari B L, Chen G, Zhang Y, Wang F and Jung J 2019 Phys. Rev. Lett. 122 016401
[15] Oka T and Aoki H 2009 Phys. Rev. B 79 081406
[16] Syzranov S V, Rodionov Ya I, Kugel K I and Nori F 2013 Phys. Rev. B 88 241112
[17] Perez-Piskunow P M, Usaj G, Balseiro C A and Foa Torres L E F 20142014 Phys. Rev. B 89 121401
[18] Glazov M M and Ganichev S D 101 Phys. Rep. 535 101
[19] Kibis O V, Dini K, Iorsh I V and Shelykh I A 20172017 Phys. Rev. B 95 125401
[20] Usaj G, Perez-Piskunow P M, Foa Torres L E F and Balseiro C A 2014 Phys. Rev. B 90 115423
[21] Li S, Liu C C and Yao Y 2018 New J. Phys. 20 033025
[22] Xu D H, Yuan J, Yao Z J, Zhou Y, Gao J H and Zhang F C 2012 Phys. Rev. B 86 201404
[23] Zhu G B and Zhang P 2013 Chin. Phys. B 22 017303
[24] Serbyn M and Abanin D A 2013 Phys. Rev. B 87 115422
[25] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[26] Lindner N H, Refael G and Galitski V 2011 Nat. Phys. 7 490
[27] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[4] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[5] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[6] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[7] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[8] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[9] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[10] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[11] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[12] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[13] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[14] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[15] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
No Suggested Reading articles found!