|
|
Giant enhancement of superconductivity in few layers MoTe2 |
Yuan Gan(甘远)1,2, Chang-Woo Cho2, Alei Li(李阿蕾)2, Jian Lyu(吕坚)2, Xu Du(杜序)3, Jin-Sheng Wen(温锦生)1, Li-Yuan Zhang(张立源)2 |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 3 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA |
|
|
Abstract Recently, the layered transition metal dichalcogenide 1T' MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential candidate for two-dimensional (2D) topological insulator in the single-and few-layer limit. Here in this work, we perform systematic transport measurements on thin flakes of MoTe2 prepared by mechanical exfoliation. We find that MoTe2 flakes are superconducting and have an onset superconducting transition temperature Tc up to 5.3 K, which significantly exceeds that of its bulk counterpart. The in-plane upper critical field (Hc2||) is much higher than the Pauli paramagnetic limit, implying that the MoTe2 flakes have Zeeman-protected Ising superconductivity. Furthermore, the Tc and Hc2 can be tuned by up to 320 mK and 400 mT by applying a gate voltage. Our result indicates that MoTe2 flake is a good candidate for studying exotic superconductivity with nontrivial topological properties.
|
Received: 13 May 2019
Revised: 12 September 2019
Accepted manuscript online:
|
PACS:
|
74.25.F-
|
(Transport properties)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Fund: Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348), the National Natural Science Foundation of China (Grant No. 11874193), and the Shenzhen Fundamental Subject Research Program, China (Grant Nos. JCYJ20170817110751776 and JCYJ20170307105434022). |
Corresponding Authors:
Li-Yuan Zhang
E-mail: zhangly@sustech.edu.cn
|
Cite this article:
Yuan Gan(甘远), Chang-Woo Cho, Alei Li(李阿蕾), Jian Lyu(吕坚), Xu Du(杜序), Jin-Sheng Wen(温锦生), Li-Yuan Zhang(张立源) Giant enhancement of superconductivity in few layers MoTe2 2019 Chin. Phys. B 28 117401
|
[1] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[2] |
Revolinsky E and Beerntsen 1966 J. Phys. Chem. Solids 27 523
|
[3] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[4] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[5] |
Dawson W and Bullett 1987 J. Phys. C-Solid State 20 6159
|
[6] |
Kan M, Nam H G, Lee Y H and Sun Q 2015 Phys. Chem. Chem. Phys. 17 14866
|
[7] |
Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D Schoop L M, Liang T, Haldoaarachchige N, Hirschberger M, Ong N P and Cava J 2014 Nature 514 205
|
[8] |
Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E and Balicas L 2015 Phys. Rev. B 92 125152
|
[9] |
Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfl, M, Wu S C, Shekhar C, Sun Y, Süå V, Schmidt M, Schwarz U, Pippel E and Medvedev S A 2016 Nat. Commun. 7 11038
|
[10] |
Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
|
[11] |
Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
|
[12] |
Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973
|
[13] |
Chang T R, Xu S, Chang G, Lee C, Huang S, Wang B, Bian G, Zheng H, Sanchez D S, Belopolski I, Alidoust N, Neupane M, Bansil A, Jeng H, Lin H and Zahid Hasan M 2016 Nat. Commun. 7 10639
|
[14] |
Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccó S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A and Baumberger F 2016 Phys. Rev. X 6 031021
|
[15] |
Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 56805
|
[16] |
Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H and Sun Y P 2016 Appl. Phys. Lett. 108 162601
|
[17] |
Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z and Liu G 2019 Nat. Commun. 10 2044
|
[18] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 96407
|
[19] |
Yang L, Wu H, Zhang W, Chen Z, Li J, Lou X, Xie Z, Zhu R and Chang H 2018 Nanoscale 10 19906
|
[20] |
Beams R, Cancado L G, Krylyuk S, Kalish I, Kalanyan B, Singh A K, Choudhary K, Bruma A, Vora P M, Tavazza F, Davydov A V and Stranick S J 2016 ACS Nano 10 9626
|
[21] |
Song P, Hsu C, Zhao M, Zhao X, Chang T R, Teng J, Lin H and Loh K P 2018 2D Mater. 5 31010
|
[22] |
Zhou Q, Rhodes D, Zhang Q R, Tang S, Schonemann R and Balicas L 2016 Phys. Rev. B 94 121101(R)
|
[23] |
Hebard A F and Vandenberg J M 1980 Phys. Rev. Lett. 44 50
|
[24] |
Yazdani A and Kapitulnik A 1995 Phys. Rev. Lett. 74 3037
|
[25] |
Okuma S, Terashima T and Kokubo N 1998 Phys. Rev. B 58 2816
|
[26] |
Zhang Y, Wong C H, Shen J, Sze S T, Zhang B, Zhang H, Dong Y, Xu H, Yan Z, Li Y, Hu X and Lortz R 2016 Sci. Rep. 6 32963
|
[27] |
He M, Wong C H, Tse P L, Zheng Y, Zhang H, Lam F L Y, Sheng P, Hu X and Lortz R 2013 ACS Nano 7 4187
|
[28] |
He R, Zhong S, Kim Hyun H, Ye G, Winford L, McHaffie R I, Chen F, Luo X, Sun Y and Tsen W A 2018 Phys. Rev. B 97 041410(R)
|
[29] |
Mandal M, Marik S, Sajilesh K P, Arushi, Singh D, Chakraborty J, Ganguli N and Singh R P 2018 Phys. Rev. Mater. 2 094201
|
[30] |
Navarro-Moratalla E, Isl, J O, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillén J A, Agraït N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043
|
[31] |
Takahashi H, Akiba T, Imura K, Shiino T, Deguchi K, Sato N K, Sakai H, Bahramy M S and Ishiwata S 2017 Phys. Rev. B 95 100501
|
[32] |
Xi X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|