Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117401    DOI: 10.1088/1674-1056/ab457f
RAPID COMMUNICATION Prev   Next  

Giant enhancement of superconductivity in few layers MoTe2

Yuan Gan(甘远)1,2, Chang-Woo Cho2, Alei Li(李阿蕾)2, Jian Lyu(吕坚)2, Xu Du(杜序)3, Jin-Sheng Wen(温锦生)1, Li-Yuan Zhang(张立源)2
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
3 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Abstract  Recently, the layered transition metal dichalcogenide 1T' MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential candidate for two-dimensional (2D) topological insulator in the single-and few-layer limit. Here in this work, we perform systematic transport measurements on thin flakes of MoTe2 prepared by mechanical exfoliation. We find that MoTe2 flakes are superconducting and have an onset superconducting transition temperature Tc up to 5.3 K, which significantly exceeds that of its bulk counterpart. The in-plane upper critical field (Hc2||) is much higher than the Pauli paramagnetic limit, implying that the MoTe2 flakes have Zeeman-protected Ising superconductivity. Furthermore, the Tc and Hc2 can be tuned by up to 320 mK and 400 mT by applying a gate voltage. Our result indicates that MoTe2 flake is a good candidate for studying exotic superconductivity with nontrivial topological properties.
Keywords:  transition metal dichalcogenide      Weyl semimetal      Ising superconductivity      magneto-transport  
Received:  13 May 2019      Revised:  12 September 2019      Accepted manuscript online: 
PACS:  74.25.F- (Transport properties)  
  74.62.-c (Transition temperature variations, phase diagrams)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348), the National Natural Science Foundation of China (Grant No. 11874193), and the Shenzhen Fundamental Subject Research Program, China (Grant Nos. JCYJ20170817110751776 and JCYJ20170307105434022).
Corresponding Authors:  Li-Yuan Zhang     E-mail:  zhangly@sustech.edu.cn

Cite this article: 

Yuan Gan(甘远), Chang-Woo Cho, Alei Li(李阿蕾), Jian Lyu(吕坚), Xu Du(杜序), Jin-Sheng Wen(温锦生), Li-Yuan Zhang(张立源) Giant enhancement of superconductivity in few layers MoTe2 2019 Chin. Phys. B 28 117401

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Revolinsky E and Beerntsen 1966 J. Phys. Chem. Solids 27 523
[3] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Dawson W and Bullett 1987 J. Phys. C-Solid State 20 6159
[6] Kan M, Nam H G, Lee Y H and Sun Q 2015 Phys. Chem. Chem. Phys. 17 14866
[7] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D Schoop L M, Liang T, Haldoaarachchige N, Hirschberger M, Ong N P and Cava J 2014 Nature 514 205
[8] Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E and Balicas L 2015 Phys. Rev. B 92 125152
[9] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfl, M, Wu S C, Shekhar C, Sun Y, Süå V, Schmidt M, Schwarz U, Pippel E and Medvedev S A 2016 Nat. Commun. 7 11038
[10] Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
[11] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[12] Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973
[13] Chang T R, Xu S, Chang G, Lee C, Huang S, Wang B, Bian G, Zheng H, Sanchez D S, Belopolski I, Alidoust N, Neupane M, Bansil A, Jeng H, Lin H and Zahid Hasan M 2016 Nat. Commun. 7 10639
[14] Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccó S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A and Baumberger F 2016 Phys. Rev. X 6 031021
[15] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 56805
[16] Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H and Sun Y P 2016 Appl. Phys. Lett. 108 162601
[17] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z and Liu G 2019 Nat. Commun. 10 2044
[18] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 96407
[19] Yang L, Wu H, Zhang W, Chen Z, Li J, Lou X, Xie Z, Zhu R and Chang H 2018 Nanoscale 10 19906
[20] Beams R, Cancado L G, Krylyuk S, Kalish I, Kalanyan B, Singh A K, Choudhary K, Bruma A, Vora P M, Tavazza F, Davydov A V and Stranick S J 2016 ACS Nano 10 9626
[21] Song P, Hsu C, Zhao M, Zhao X, Chang T R, Teng J, Lin H and Loh K P 2018 2D Mater. 5 31010
[22] Zhou Q, Rhodes D, Zhang Q R, Tang S, Schonemann R and Balicas L 2016 Phys. Rev. B 94 121101(R)
[23] Hebard A F and Vandenberg J M 1980 Phys. Rev. Lett. 44 50
[24] Yazdani A and Kapitulnik A 1995 Phys. Rev. Lett. 74 3037
[25] Okuma S, Terashima T and Kokubo N 1998 Phys. Rev. B 58 2816
[26] Zhang Y, Wong C H, Shen J, Sze S T, Zhang B, Zhang H, Dong Y, Xu H, Yan Z, Li Y, Hu X and Lortz R 2016 Sci. Rep. 6 32963
[27] He M, Wong C H, Tse P L, Zheng Y, Zhang H, Lam F L Y, Sheng P, Hu X and Lortz R 2013 ACS Nano 7 4187
[28] He R, Zhong S, Kim Hyun H, Ye G, Winford L, McHaffie R I, Chen F, Luo X, Sun Y and Tsen W A 2018 Phys. Rev. B 97 041410(R)
[29] Mandal M, Marik S, Sajilesh K P, Arushi, Singh D, Chakraborty J, Ganguli N and Singh R P 2018 Phys. Rev. Mater. 2 094201
[30] Navarro-Moratalla E, Isl, J O, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillén J A, Agraït N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043
[31] Takahashi H, Akiba T, Imura K, Shiino T, Deguchi K, Sato N K, Sakai H, Bahramy M S and Ishiwata S 2017 Phys. Rev. B 95 100501
[32] Xi X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[4] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[5] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[6] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[10] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[11] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[12] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[13] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[14] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[15] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
No Suggested Reading articles found!