|
Abstract It has long been recognized that the valence electrons of an atom dominate the chemical properties, while the inner-shell electrons or outer empty orbital do not participate in chemical reactions. Pressure, as a fundamental thermodynamic variable, plays an important role in the preparation of new materials. More recently, pressure stabilized a series of unconventional stoichiometric compounds with new oxidation states, in which the inner-shell electrons or outer empty orbital become chemically active. Here, we mainly focus on the recent advances in high-pressure new chemistry including novel chemical bonding and new oxidation state, identified by first-principles swarm intelligence structural search calculations. The aim of this review is to provide an up-to-date research progress on the chemical bonding with inner-shell electrons or outer empty orbital, abnormal interatomic charge transfer, hypervalent compounds, and chemical reactivity of noble gases. Personal outlook on the challenge and opportunity in this field are proposed in the conclusion.
|
Received: 10 June 2019
Revised: 18 July 2019
Accepted manuscript online:
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
61.50.Nw
|
(Crystal stoichiometry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21573037, 21873017, 11704062, and 51732003), the Postdoctoral Science Foundation of China (Grant No. 2013M541283), the Natural Science Foundation of Jilin Province, China (Grant No. 20190201231JC), the "111" Project, China (Grant No. B13013), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2412017QD006). |
Corresponding Authors:
Guochun Yang
E-mail: yanggc468@nenu.edu.cn
|
Cite this article:
Jianyan Lin(蔺健妍), Xin Du(杜鑫), Guochun Yang(杨国春) Pressure-induced new chemistry 2019 Chin. Phys. B 28 106106
|
[35] |
Miao M, Botana J, Pravica M, Sneed D and Park C 2017 Jpn. J. Appl. Phys. 56 05FA10
|
[1] |
Pauling L 1960 The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press)
|
[36] |
Miao M S 2013 Nat. Chem. 5 846
|
[2] |
Frenking G and Shaik S 2014 The chemical bond: Fundamental aspects of chemical bonding (Wiley-VCH Verlag GmbH & Co. KGaA)
|
[37] |
Luo D, Lv J, Peng F, Wang Y, Yang G, Rahm M and Ma Y 2019 Chem. Sci. 10 2543
|
[3] |
Crabtree R H 2002 Science 295 288
|
[38] |
Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
|
[4] |
Goesten M G, Rahm M, Bickelhaupt F M and Hensen E J M 2017 Angew. Chem. Int. Ed. 56 9772
|
[39] |
Broux T, Ubukata H, Pickard C J, Takeiri F, Kobayashi G, Kawaguchi S, Yonemura M, Goto Y, Tassel C and Kageyama H 2019 J. Am. Chem. Soc. 141 8717
|
[40] |
Binns J, Donnelly M E, Peña-Alvarez M, Wang M, Gregoryanz E, Hermann A, Dalladay-Simpson P and Howie R T 2019 J. Phys. Chem. Lett. 10 1109
|
[5] |
Himmel D, Knapp C, Patzschke M and Riedel S 2010 ChemPhysChem 11 865
|
[41] |
Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
|
[6] |
Wang G, Zhou M, Goettel J T, Schrobilgen G J, Su J, Li J, Schlöder T and Riedel S 2014 Nature 514 475
|
[42] |
Walsh J P S, Clarke S M, Puggioni D, Tamerius A D, Meng Y, Rondinelli J M, Jacobsen S D and Freedman D E 2019 Chem. Mater. 31 3083
|
[7] |
Karen P, McArdle P and Takats J 2014 Toward a Comprehensive Definition of Oxidation State (IUPAC Technical Report in Pure Appl. Chem.) p. 1017
|
[43] |
Pernpointner M and Hashmi A S K 2009 J. Chem. Theory Comput. 5 2717
|
[8] |
Riedel S and Kaupp M 2009 Coord. Chem. Rev. 253 606
|
[44] |
Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
|
[9] |
Windorff C J, Chen G P, Cross J N, Evans W J, Furche F, Gaunt A J, Janicke M T, Kozimor S A and Scott B L 2017 J. Am. Chem. Soc. 139 3970
|
[45] |
Gorin D J and Toste F D 2007 Nature 446 395
|
[10] |
Zhang Q, Hu S, Qu H, Su J, Wang G, Lu J, Chen M, Zhou M and Li J 2016 Angew. Chem. Int. Ed. 55 6896
|
[46] |
Bond G C 2002 Catal. Today 72 5
|
[11] |
McMillan P F 2006 Chem. Soc. Rev. 35 855
|
[47] |
Gimeno M C and Laguna A 2003 Gold. Bull. 36 83
|
[12] |
Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
|
[48] |
Miao M, Brgoch J, Krishnapriyan A, Goldman A, Kurzman J A and Seshadri R 2013 Inorg. Chem. 52 8183
|
[13] |
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
|
[49] |
Wang X, Andrews L, Willmann K, Brosi F and Riedel S 2012 Angew. Chem. Int. Ed. 51 10628
|
[14] |
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
|
[50] |
Himmel D and Riedel S 2007 Inorg. Chem. 46 5338
|
[15] |
Zurek E and Bi T 2019 J. Chem. Phys. 150 050901
|
[51] |
Koirala P, Willis M, Kiran B, Kandalam A K and Jena P 2010 J. Phys. Chem. C 114 16018
|
[16] |
Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502
|
[52] |
Wu C Y, Horibe T, Jacobsen C B and Toste F D 2015 Nature 517 449
|
[17] |
Zhu Q, Jung D Y, Oganov A R, Glass C W, Gatti C and Lyakhov A O 2013 Nat. Chem. 5 61
|
[53] |
Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A and Bourissou D 2017 Nat. Commun. 8 565
|
[18] |
Zurek E, Hoffmann R, Ashcroft N W, Oganov A R and Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640
|
[54] |
Huang L, Rudolph M, Rominger F and Hashmi A S K 2016 Angew. Chem. Int. Ed. 55 4808
|
[19] |
Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
|
[55] |
Jansen M 2008 Chem. Soc. Rev. 37 1826
|
[20] |
Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science 311 1275
|
[56] |
Mohr F 2004 Gold. Bull. 37 164
|
[21] |
Miao M S and Hoffmann R 2014 Acc. Chem. Res. 47 1311
|
[57] |
Lin J, Zhang S, Guan W, Yang G and Ma Y 2018 J. Am. Chem. Soc. 140 9545
|
[22] |
Rahm M, Cammi R, Ashcroft N W and Hoffmann R 2019 J. Am. Chem. Soc. 141 10253
|
[58] |
Tang M, Zhang Y, Li S, Wu X, Jia Y and Yang G 2018 ChemPhysChem 19 2989
|
[23] |
Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
|
[59] |
Yang G, Wang Y, Peng F, Bergara A and Ma Y 2016 J. Am. Chem. Soc. 138 4046
|
[24] |
Chris J P and Needs R J 2011 J. Phys.: Condens. Matter 23 053201
|
[60] |
Dye James L 2015 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373 20140174
|
[25] |
Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
|
[61] |
Moock K and Seppelt K 1989 Angew. Chem. Int. Ed. Engl. 28 1676
|
[26] |
Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
|
[62] |
Asprey L B, Margrave J L and Silverthorn M E 1961 J. Am. Chem. Soc. 83 2955
|
[27] |
Gao G, Hoffmann R, Ashcroft N W, Liu H, Bergara A and Ma Y 2013 Phys. Rev. B 88 184104
|
[63] |
Jehoulet C and Bard A J 1991 Angew. Chem. Int. Ed. Engl. 30 836
|
[28] |
Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X F, He J, Gao G and Tian Y 2019 Phys. Rev. B 99 100505
|
[64] |
Dye J L, Ceraso J M, Lok M, Barnett B L and Tehan F J 1974 J. Am. Chem. Soc. 96 608
|
[29] |
Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
|
[30] |
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
|
[65] |
Tehan F J, Barnett B L and Dye J L 1974 J. Am. Chem. Soc. 96 7203
|
[31] |
Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
|
[66] |
Dye J L 1979 Angew. Chem. Int. Ed. Engl. 18 587
|
[32] |
Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q, Ma Y and Zou G 2011 Phys. Rev. Lett. 106 145501
|
[67] |
Li Z, Yang J, Hou J G and Zhu Q 2004 Chem. Eur. J. 10 1592
|
[33] |
Xie Y, Oganov A R and Ma Y 2010 Phys. Rev. Lett. 104 177005
|
[68] |
Schwarz U, Takemura K, Hanfl M and Syassen K 1998 Phys. Rev. Lett. 81 2711
|
[34] |
Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I and Wang H T 2017 Nat. Chem. 9 440
|
[69] |
Takemura K, Christensen N E, Novikov D L, Syassen K, Schwarz U and Hanfl M 2000 Phys. Rev. B 61 14399
|
[35] |
Miao M, Botana J, Pravica M, Sneed D and Park C 2017 Jpn. J. Appl. Phys. 56 05FA10
|
[70] |
Takemura K, Minomura S and Shimomura O 1982 Phys. Rev. Lett. 49 1772
|
[36] |
Miao M S 2013 Nat. Chem. 5 846
|
[71] |
Shamp A, Hooper J and Zurek E 2012 Inorg. Chem. 51 9333
|
[37] |
Luo D, Lv J, Peng F, Wang Y, Yang G, Rahm M and Ma Y 2019 Chem. Sci. 10 2543
|
[72] |
Hooper J and Zurek E 2012 Chem. Eur. J. 18 5013
|
[38] |
Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
|
[73] |
Desgreniers S, Tse J S, Matsuoka T, Ohishi Y and Tse J J 2015 Sci. Adv. 1 e1500669
|
[39] |
Broux T, Ubukata H, Pickard C J, Takeiri F, Kobayashi G, Kawaguchi S, Yonemura M, Goto Y, Tassel C and Kageyama H 2019 J. Am. Chem. Soc. 141 8717
|
[74] |
Botana J and Miao M S 2014 Nat. Commun. 5 4861
|
[40] |
Binns J, Donnelly M E, Peña-Alvarez M, Wang M, Gregoryanz E, Hermann A, Dalladay-Simpson P and Howie R T 2019 J. Phys. Chem. Lett. 10 1109
|
[75] |
Schilling J S 2006 High Press. Res. 26 145
|
[41] |
Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
|
[76] |
Kobrin P H, Rosenberg R A, Becker U, Southworth S, Truesdale C M, Lindle D W, Thornton G, White M G, Poliakoff E D and Shirley D A 1983 J. Phys. B: At. Mol. Phys. 16 4339
|
[42] |
Walsh J P S, Clarke S M, Puggioni D, Tamerius A D, Meng Y, Rondinelli J M, Jacobsen S D and Freedman D E 2019 Chem. Mater. 31 3083
|
[77] |
Luo D, Wang Y, Yang G and Ma Y 2018 J. Phys. Chem. C 122 12448
|
[43] |
Pernpointner M and Hashmi A S K 2009 J. Chem. Theory Comput. 5 2717
|
[78] |
Higelin A and Riedel S 2017 19 High Oxidation States in Transition Metal Fluorides in Modern Synthesis Processes (Editors: Groult H, Leroux F R and Tressaud A) Elsevier p. 561
|
[44] |
Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
|
[79] |
Frenking G 2000 Nature 406 836
|
[45] |
Gorin D J and Toste F D 2007 Nature 446 395
|
[80] |
Seppelt K 2015 Chem. Rev. 115 1296
|
[46] |
Bond G C 2002 Catal. Today 72 5
|
[81] |
Drews T, Supeł J, Hagenbach A and Seppelt K 2006 Inorg. Chem. 45 3782
|
[47] |
Gimeno M C and Laguna A 2003 Gold. Bull. 36 83
|
[82] |
Craciun R, Picone D, Long R T, Li S, Dixon D A, Peterson K A and Christe K O 2010 Inorg. Chem. 49 1056
|
[48] |
Miao M, Brgoch J, Krishnapriyan A, Goldman A, Kurzman J A and Seshadri R 2013 Inorg. Chem. 52 8183
|
[83] |
Botana J, Wang X, Hou C, Yan D, Lin H, Ma Y and Miao M-s 2015 Angew. Chem. Int. Ed. 54 9280
|
[49] |
Wang X, Andrews L, Willmann K, Brosi F and Riedel S 2012 Angew. Chem. Int. Ed. 51 10628
|
[84] |
Jensen W B 2003 J. Chem. Edu. 80 952
|
[50] |
Himmel D and Riedel S 2007 Inorg. Chem. 46 5338
|
[85] |
Lin J, Zhao Z, Liu C, Zhang J, Du X, Yang G and Ma Y 2019 J. Am. Chem. Soc. 141 5409
|
[51] |
Koirala P, Willis M, Kiran B, Kandalam A K and Jena P 2010 J. Phys. Chem. C 114 16018
|
[86] |
Gong Y, Zhou M, Kaupp M and Riedel S 2009 Angew. Chem. Int. Ed. 48 7879
|
[52] |
Wu C Y, Horibe T, Jacobsen C B and Toste F D 2015 Nature 517 449
|
[87] |
Zhang H, Li Y, Hou J, Tu K and Chen Z 2016 J. Am. Chem. Soc. 138 5644
|
[53] |
Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A and Bourissou D 2017 Nat. Commun. 8 565
|
[88] |
Yang L M, Ganz E, Chen Z, Wang Z X and Schleyer P v R 2015 Angew. Chem. Int. Ed. 54 9468
|
[54] |
Huang L, Rudolph M, Rominger F and Hashmi A S K 2016 Angew. Chem. Int. Ed. 55 4808
|
[89] |
Lipke M C and Tilley T D 2014 J. Am. Chem. Soc. 136 16387
|
[55] |
Jansen M 2008 Chem. Soc. Rev. 37 1826
|
[90] |
Khan A and Foucher D 2016 Coord. Chem. Rev. 312 41
|
[56] |
Mohr F 2004 Gold. Bull. 37 164
|
[57] |
Lin J, Zhang S, Guan W, Yang G and Ma Y 2018 J. Am. Chem. Soc. 140 9545
|
[91] |
Wang Z X and Schleyer P v R 2002 Angew. Chem. Int. Ed. 41 4082
|
[58] |
Tang M, Zhang Y, Li S, Wu X, Jia Y and Yang G 2018 ChemPhysChem 19 2989
|
[92] |
Sreenithya A, Patel C, Hadad C M and Sunoj R B 2017 ACS Catal. 7 4189
|
[59] |
Yang G, Wang Y, Peng F, Bergara A and Ma Y 2016 J. Am. Chem. Soc. 138 4046
|
[93] |
Liang H and Ciufolini M A 2011 Angew. Chem. Int. Ed. 50 11849
|
[60] |
Dye James L 2015 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373 20140174
|
[94] |
Richardson R D and Wirth T 2006 Angew. Chem. Int. Ed. 45 4402
|
[61] |
Moock K and Seppelt K 1989 Angew. Chem. Int. Ed. Engl. 28 1676
|
[95] |
Zhdankin V V 2013 Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons
|
[62] |
Asprey L B, Margrave J L and Silverthorn M E 1961 J. Am. Chem. Soc. 83 2955
|
[96] |
Schilter D 2019 Nat. Rev. Chem. 3 65
|
[63] |
Jehoulet C and Bard A J 1991 Angew. Chem. Int. Ed. Engl. 30 836
|
[97] |
Hoppe R, Dähne W, Mattauch H and Rödder K M 1962 Angew. Chem. 74 903
|
[64] |
Dye J L, Ceraso J M, Lok M, Barnett B L and Tehan F J 1974 J. Am. Chem. Soc. 96 608
|
[98] |
Claassen H H, Selig H and Malm J G 1962 J. Am. Chem. Soc. 84 3593
|
[65] |
Tehan F J, Barnett B L and Dye J L 1974 J. Am. Chem. Soc. 96 7203
|
[99] |
Weinstock B, Weaver E E and Knop C P 1966 Inorg. Chem. 5 2189
|
[66] |
Dye J L 1979 Angew. Chem. Int. Ed. Engl. 18 587
|
[100] |
Peng F, Botana J, Wang Y, Ma Y and Miao M 2016 J. Phys. Chem. Lett. 7 4562
|
[67] |
Li Z, Yang J, Hou J G and Zhu Q 2004 Chem. Eur. J. 10 1592
|
[101] |
Drews T and Seppelt K 1997 Angew. Chem. Int. Ed. Engl. 36 273
|
[68] |
Schwarz U, Takemura K, Hanfl M and Syassen K 1998 Phys. Rev. Lett. 81 2711
|
[102] |
Stein L, Norris J R, Downs A J and Minihan A R 1978 J. Chem. Soc. Chem. Commun. 502
|
[69] |
Takemura K, Christensen N E, Novikov D L, Syassen K, Schwarz U and Hanfl M 2000 Phys. Rev. B 61 14399
|
[103] |
Seidel S, Seppelt K, van Wüllen C and Sun X Y 2007 Angew. Chem. Int. Ed. 46 6717
|
[70] |
Takemura K, Minomura S and Shimomura O 1982 Phys. Rev. Lett. 49 1772
|
[104] |
Zarifi N, Liu H, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941
|
[71] |
Shamp A, Hooper J and Zurek E 2012 Inorg. Chem. 51 9333
|
[105] |
Peng F, Wang Y, Wang H, Zhang Y and Ma Y 2015 Phys. Rev. B 92 094104
|
[72] |
Hooper J and Zurek E 2012 Chem. Eur. J. 18 5013
|
[106] |
Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644
|
[73] |
Desgreniers S, Tse J S, Matsuoka T, Ohishi Y and Tse J J 2015 Sci. Adv. 1 e1500669
|
[107] |
Connerade J P, Dolmatov V K and Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251
|
[74] |
Botana J and Miao M S 2014 Nat. Commun. 5 4861
|
[108] |
Zhang S, Bi H, Wei S, Wang J, Li Q and Ma Y 2015 J. Phys. Chem. C 119 24996
|
[75] |
Schilling J S 2006 High Press. Res. 26 145
|
[109] |
Li X, Hermann A, Peng F, Lv J, Wang Y, Wang H and Ma Y 2015 Sci. Rep. 5 16675
|
[76] |
Kobrin P H, Rosenberg R A, Becker U, Southworth S, Truesdale C M, Lindle D W, Thornton G, White M G, Poliakoff E D and Shirley D A 1983 J. Phys. B: At. Mol. Phys. 16 4339
|
[110] |
Miao M-s, Wang X-l, Brgoch J, Spera F, Jackson M G, Kresse G and Lin H-q 2015 J. Am. Chem. Soc. 137 14122
|
[77] |
Luo D, Wang Y, Yang G and Ma Y 2018 J. Phys. Chem. C 122 12448
|
[78] |
Higelin A and Riedel S 2017 19 High Oxidation States in Transition Metal Fluorides in Modern Synthesis Processes (Editors: Groult H, Leroux F R and Tressaud A) Elsevier p. 561
|
[111] |
Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T and Xing D 2019 Nat. Phys.
|
[79] |
Frenking G 2000 Nature 406 836
|
[112] |
Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin H-q and Miao M-s 2018 Nat. Commun. 9 951
|
[80] |
Seppelt K 2015 Chem. Rev. 115 1296
|
[81] |
Drews T, Supeł J, Hagenbach A and Seppelt K 2006 Inorg. Chem. 45 3782
|
[113] |
Liu H, Yao Y and Klug D D 2015 Phys. Rev. B 91 014102
|
[82] |
Craciun R, Picone D, Long R T, Li S, Dixon D A, Peterson K A and Christe K O 2010 Inorg. Chem. 49 1056
|
[114] |
Sanloup C, Bonev S A, Hochlaf M and Maynard-Casely H E 2013 Phys. Rev. Lett. 110 265501
|
[83] |
Botana J, Wang X, Hou C, Yan D, Lin H, Ma Y and Miao M-s 2015 Angew. Chem. Int. Ed. 54 9280
|
[115] |
Gao H, Sun J, Pickard C J and Needs R J 2019 Phys. Rev. Mater. 3 015002
|
[84] |
Jensen W B 2003 J. Chem. Edu. 80 952
|
[116] |
Wang Y, Zhang J, Liu H and Yang G 2015 Chem. Phys. Lett. 640 115
|
[85] |
Lin J, Zhao Z, Liu C, Zhang J, Du X, Yang G and Ma Y 2019 J. Am. Chem. Soc. 141 5409
|
[117] |
Cazorla C, Errandonea D and Sola E 2009 Phys. Rev. B 80 064105
|
[86] |
Gong Y, Zhou M, Kaupp M and Riedel S 2009 Angew. Chem. Int. Ed. 48 7879
|
[87] |
Zhang H, Li Y, Hou J, Tu K and Chen Z 2016 J. Am. Chem. Soc. 138 5644
|
[118] |
Loubeyre P, Jean-Louis M, LeToullec R and CharonG érard L 1993 Phys. Rev. Lett. 70 178
|
[88] |
Yang L M, Ganz E, Chen Z, Wang Z X and Schleyer P v R 2015 Angew. Chem. Int. Ed. 54 9468
|
[119] |
Chen Q F, Cai L C, Jing F Q and Chen D Q 2005 Chin. Phys. Lett. 22 2005
|
[89] |
Lipke M C and Tilley T D 2014 J. Am. Chem. Soc. 136 16387
|
[90] |
Khan A and Foucher D 2016 Coord. Chem. Rev. 312 41
|
[91] |
Wang Z X and Schleyer P v R 2002 Angew. Chem. Int. Ed. 41 4082
|
[92] |
Sreenithya A, Patel C, Hadad C M and Sunoj R B 2017 ACS Catal. 7 4189
|
[93] |
Liang H and Ciufolini M A 2011 Angew. Chem. Int. Ed. 50 11849
|
[94] |
Richardson R D and Wirth T 2006 Angew. Chem. Int. Ed. 45 4402
|
[95] |
Zhdankin V V 2013 Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons
|
[96] |
Schilter D 2019 Nat. Rev. Chem. 3 65
|
[97] |
Hoppe R, Dähne W, Mattauch H and Rödder K M 1962 Angew. Chem. 74 903
|
[98] |
Claassen H H, Selig H and Malm J G 1962 J. Am. Chem. Soc. 84 3593
|
[99] |
Weinstock B, Weaver E E and Knop C P 1966 Inorg. Chem. 5 2189
|
[100] |
Peng F, Botana J, Wang Y, Ma Y and Miao M 2016 J. Phys. Chem. Lett. 7 4562
|
[101] |
Drews T and Seppelt K 1997 Angew. Chem. Int. Ed. Engl. 36 273
|
[102] |
Stein L, Norris J R, Downs A J and Minihan A R 1978 J. Chem. Soc. Chem. Commun. 502
|
[103] |
Seidel S, Seppelt K, van Wüllen C and Sun X Y 2007 Angew. Chem. Int. Ed. 46 6717
|
[104] |
Zarifi N, Liu H, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941
|
[105] |
Peng F, Wang Y, Wang H, Zhang Y and Ma Y 2015 Phys. Rev. B 92 094104
|
[106] |
Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644
|
[107] |
Connerade J P, Dolmatov V K and Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251
|
[108] |
Zhang S, Bi H, Wei S, Wang J, Li Q and Ma Y 2015 J. Phys. Chem. C 119 24996
|
[109] |
Li X, Hermann A, Peng F, Lv J, Wang Y, Wang H and Ma Y 2015 Sci. Rep. 5 16675
|
[110] |
Miao M-s, Wang X-l, Brgoch J, Spera F, Jackson M G, Kresse G and Lin H-q 2015 J. Am. Chem. Soc. 137 14122
|
[111] |
Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T and Xing D 2019 Nat. Phys.
|
[112] |
Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin H-q and Miao M-s 2018 Nat. Commun. 9 951
|
[113] |
Liu H, Yao Y and Klug D D 2015 Phys. Rev. B 91 014102
|
[114] |
Sanloup C, Bonev S A, Hochlaf M and Maynard-Casely H E 2013 Phys. Rev. Lett. 110 265501
|
[115] |
Gao H, Sun J, Pickard C J and Needs R J 2019 Phys. Rev. Mater. 3 015002
|
[116] |
Wang Y, Zhang J, Liu H and Yang G 2015 Chem. Phys. Lett. 640 115
|
[117] |
Cazorla C, Errandonea D and Sola E 2009 Phys. Rev. B 80 064105
|
[118] |
Loubeyre P, Jean-Louis M, LeToullec R and CharonG érard L 1993 Phys. Rev. Lett. 70 178
|
[119] |
Chen Q F, Cai L C, Jing F Q and Chen D Q 2005 Chin. Phys. Lett. 22 2005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|