Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106105    DOI: 10.1088/1674-1056/ab4174
Special Issue: TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery
TOPICAL REVIEW—CALYPSO structure prediction methodology and its applications to materials discovery Prev   Next  

The CALYPSO methodology for structure prediction

Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超)
Innovation Center of Computational Physics Methods and Software, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.
Keywords:  structure prediction      CALYPSO method      crystal structure      potential energy surface  
Received:  30 July 2019      Revised:  28 August 2019      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  31.50.-x (Potential energy surfaces)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11534003 and 11604117), the National Key Research and Development Program of China (Grant No. 2016YFB0201201), the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT) of China, and the Science Challenge Project of China (Grant No. TZ2016001).
Corresponding Authors:  Jian Lv, Yanchao Wang     E-mail:  lvjian@calypso.cn;wyc@calypso.cn

Cite this article: 

Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超) The CALYPSO methodology for structure prediction 2019 Chin. Phys. B 28 106105

[33] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[1] Wang L S 2016 Int. Rev. Phys. Chem. 35 69
[34] Woodley S M and Catlow R 2008 Nat. Mater. 7 937
[35] Zhao J, Shi R, Sai L, Huang X and Su Y 2016 Mol. Simul. 42 809
[36] Wang H, Wang Y, Lv J, Li Q, Zhang L and Ma Y 2016 Comput. Mater. Sci. 112 406
[2] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M and Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503
[37] Wang Y, Lv J, Zhu L, Lu S, Yin K, Li Q, Wang H, Zhang L and Ma Y 2015 J. Phys. Condens. Matter 27 203203
[3] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[38] Stillinger F H 1999 Phys. Rev. E 59 48
[4] Maddox J 1988 Nature 335 201
[39] Tsai C J and Jordan K D 1993 J. Phys. Chem. 97 11227
[40] Doye J P K and Wales D J 1995 J. Chem. Phys. 102 9659
[5] Wang Y and Ma Y 2014 J. Chem. Phys. 140 040901
[41] Wales D 2004 Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge: Cambridge University Press)
[6] Oganov A R, Pickard C J, Zhu Q and Needs R J 2019 Nat. Rev. Mater. 4 331
[42] Jensen F 2007 Introduction to Computational Chemistry (Wiley)
[7] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671
[43] Roy S, Goedecker S and Hellmann V 2008 Phys. Rev. E 77 56707
[8] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111
[9] Goedecker S 2004 J. Chem. Phys. 120 9911
[44] Wales D J 1998 Chem. Phys. Lett. 285 330
[10] Martoňák R, Laio A and Parrinello M 2003 Phys. Rev. Lett. 90 075503
[45] Wolpert D H and Macready W G 1997 IEEE Trans. Evol. Comput. 1 67
[11] Pickard C J and Needs R J 2011 J. Phys. Condens. Matter 23 053201
[46] Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 15502
[12] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[47] Chen F, Ju M, Kuang X and Yeung Y 2018 Inorg. Chem. 57 4563
[13] Lonie D C and Zurek E 2011 Comput. Phys. Commun. 182 372
[48] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[14] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T and Drautz R 2010 Phys. Rev. Lett. 105 217003
[49] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[15] Trimarchi G and Zunger A 2007 Phys. Rev. B 75 104113
[50] Oganov A R and Valle M 2009 J. Chem. Phys. 130 104504
[16] Bahmann S and Kortus J 2013 Comput. Phys. Commun. 184 1618
[51] Zhu L, Amsler M, Fuhrer T, Schaefer B, Faraji S, Rostami S, Ghasemi S A, Sadeghi A, Grauzinyte M, Wolverton C and Goedecker S 2016 J. Chem. Phys. 144 034203
[17] Bi W, Meng Y, Kumar R S, Cornelius A L, Tipton W W, Hennig R G, Zhang Y, Chen C and Schilling J S 2011 Phys. Rev. B 83 104106
[52] Sadeghi A, Ghasemi S A, Schaefer B, Mohr S, Lill M A and Goedecker S 2013 J. Chem. Phys. 139 184118
[18] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[53] Behler J 2011 J. Chem. Phys. 134 074106
[19] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[54] Bartók A P, Kondor R and Csányi G 2013 Phys. Rev. B 87 184115
[20] Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F and Ma Y 2016 Phys. Rev. B 93 020103
[55] Todeschini R and Consonni V 2009 Mol. Descriptors For Chemoinformatics: Volume I: Alphabetical Listing/volume Ⅱ: Appendices References Vol 41 (John Wiley & Sons)
[21] Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502
[56] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[22] Li Y, Hao J, Liu H, Tse J S, Wang Y and Ma Y 2015 Sci. Rep. 5 9948
[57] Kennedy J and Eberhart R 1995 Proc. ICNN'95-Int. Conf. Neural Netw. 4 1942
[23] Li Y, Wang Y, Pickard C J, Needs R J, Wang Y and Ma Y 2015 Phys. Rev. Lett. 114 125501
[58] Eberhart R and Kennedy J 1995 Proc. Sixth Int. Symp. Micro Mach. Hum. Sci. p. 39
[24] Li Y, Feng X, Liu H, Hao J, Redfern S A T, Lei W, Liu D and Ma Y 2018 Nat. Commun. 9 722
[59] Wang Y, Liu H, Lv J, Zhu L, Wang H and Ma Y 2011 Nat. Commun. 2 563
[25] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[60] Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[26] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2015 Sci. Rep. 4 6968
[61] Lu S, Wang Y, Liu H, Miao M and Ma Y 2014 Nat. Commun. 5 3666
[27] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[62] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[28] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. 114 6990
[63] Gao B, Shao X, Lv J, Wang Y and Ma Y 2015 J. Phys. Chem. C 119 20111
[29] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[64] Gao P, Wang S, Lv J, Wang Y and Ma Y 2017 RSC Adv. 7 39869
[30] Ahart M, Somayazulu M, Meng Y, Struzhkin V V, Baldini M, Mishra A K, Geballe Z M and Hemley R J 2019 Phys. Rev. Lett. 122 27001
[65] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[31] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[66] Gao P, Tong Q, Lv J, Wang Y and Ma Y 2017 Comput. Phys. Commun. 213 40
[32] Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502
[67] Zhang Y, Wang H, Wang Y, Zhang L and Ma Y 2017 Phys. Rev. X 7 011017
[33] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[68] Su C, Lv J, Li Q, Wang H, Zhang L, Wang Y and Ma Y 2017 J. Phys. Condens. Matter 29 165901
[34] Woodley S M and Catlow R 2008 Nat. Mater. 7 937
[69] Behler J 2016 J. Chem. Phys. 145 170901
[35] Zhao J, Shi R, Sai L, Huang X and Su Y 2016 Mol. Simul. 42 809
[70] Jacobsen T L, Jorgensen M S and Hammer B 2018 Phys. Rev. Lett. 120 026102
[36] Wang H, Wang Y, Lv J, Li Q, Zhang L and Ma Y 2016 Comput. Mater. Sci. 112 406
[71] Deringer V L, Csányi G and Proserpio D M 2017 ChemPhysChem. 18 873
[37] Wang Y, Lv J, Zhu L, Lu S, Yin K, Li Q, Wang H, Zhang L and Ma Y 2015 J. Phys. Condens. Matter 27 203203
[72] Deringer V L, Pickard C J and Csányi G 2018 Phys. Rev. Lett. 120 156001
[38] Stillinger F H 1999 Phys. Rev. E 59 48
[73] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[39] Tsai C J and Jordan K D 1993 J. Phys. Chem. 97 11227
[74] Tong Q, Xue L, Lv J, Wang Y and Ma Y 2018 Faraday Discuss. 211 31
[75] Reilly A M, Cooper R I, Adjiman C S, et al. 2016 Acta Crystallogr. Sect. B 72 439
[40] Doye J P K and Wales D J 1995 J. Chem. Phys. 102 9659
[41] Wales D 2004 Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge: Cambridge University Press)
[42] Jensen F 2007 Introduction to Computational Chemistry (Wiley)
[43] Roy S, Goedecker S and Hellmann V 2008 Phys. Rev. E 77 56707
[44] Wales D J 1998 Chem. Phys. Lett. 285 330
[45] Wolpert D H and Macready W G 1997 IEEE Trans. Evol. Comput. 1 67
[46] Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 15502
[47] Chen F, Ju M, Kuang X and Yeung Y 2018 Inorg. Chem. 57 4563
[48] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[49] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[50] Oganov A R and Valle M 2009 J. Chem. Phys. 130 104504
[51] Zhu L, Amsler M, Fuhrer T, Schaefer B, Faraji S, Rostami S, Ghasemi S A, Sadeghi A, Grauzinyte M, Wolverton C and Goedecker S 2016 J. Chem. Phys. 144 034203
[52] Sadeghi A, Ghasemi S A, Schaefer B, Mohr S, Lill M A and Goedecker S 2013 J. Chem. Phys. 139 184118
[53] Behler J 2011 J. Chem. Phys. 134 074106
[54] Bartók A P, Kondor R and Csányi G 2013 Phys. Rev. B 87 184115
[55] Todeschini R and Consonni V 2009 Mol. Descriptors For Chemoinformatics: Volume I: Alphabetical Listing/volume Ⅱ: Appendices References Vol 41 (John Wiley & Sons)
[56] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[57] Kennedy J and Eberhart R 1995 Proc. ICNN'95-Int. Conf. Neural Netw. 4 1942
[58] Eberhart R and Kennedy J 1995 Proc. Sixth Int. Symp. Micro Mach. Hum. Sci. p. 39
[59] Wang Y, Liu H, Lv J, Zhu L, Wang H and Ma Y 2011 Nat. Commun. 2 563
[60] Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[61] Lu S, Wang Y, Liu H, Miao M and Ma Y 2014 Nat. Commun. 5 3666
[62] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[63] Gao B, Shao X, Lv J, Wang Y and Ma Y 2015 J. Phys. Chem. C 119 20111
[64] Gao P, Wang S, Lv J, Wang Y and Ma Y 2017 RSC Adv. 7 39869
[65] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[66] Gao P, Tong Q, Lv J, Wang Y and Ma Y 2017 Comput. Phys. Commun. 213 40
[67] Zhang Y, Wang H, Wang Y, Zhang L and Ma Y 2017 Phys. Rev. X 7 011017
[68] Su C, Lv J, Li Q, Wang H, Zhang L, Wang Y and Ma Y 2017 J. Phys. Condens. Matter 29 165901
[69] Behler J 2016 J. Chem. Phys. 145 170901
[70] Jacobsen T L, Jorgensen M S and Hammer B 2018 Phys. Rev. Lett. 120 026102
[71] Deringer V L, Csányi G and Proserpio D M 2017 ChemPhysChem. 18 873
[72] Deringer V L, Pickard C J and Csányi G 2018 Phys. Rev. Lett. 120 156001
[73] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[74] Tong Q, Xue L, Lv J, Wang Y and Ma Y 2018 Faraday Discuss. 211 31
[75] Reilly A M, Cooper R I, Adjiman C S, et al. 2016 Acta Crystallogr. Sect. B 72 439
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[5] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[6] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[7] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[10] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[11] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[12] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[13] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[14] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[15] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
No Suggested Reading articles found!