INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults |
Hong-Ping Yang(杨宏平)1, Wen-Juan Yuan(原文娟)2, Jun Luo(罗俊)2, Jing Zhu(朱静)1 |
1 National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials(MOE), Tsinghua University, Beijing 100084, China;
2 Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China |
|
|
Abstract Bilayer graphene quantum dots with rotational stacking faults (RSFs) having different rotational angles were studied. Using the first-principles calculation, we determined that these stacking faults could quantitatively modulate the magnetism and the distribution of spin and energy levels in the electronic structures of the dots. In addition, by examining the spatial distribution of unpaired spins and Bader charge analysis, we found that the main source of magnetic moment originated from the edge atoms of the quantum dots. Our research results can potentially provide a new path for producing all-carbon nanodevices with different electrical and magnetic properties.
|
Received: 24 February 2019
Revised: 26 April 2019
Accepted manuscript online:
|
PACS:
|
81.05.ub
|
(Fullerenes and related materials)
|
|
81.05.ue
|
(Graphene)
|
|
31.15.E
|
(Density-functional theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374174, 51390471, 51527803, and 51701143), the National Basic Research Program of China (Grant No. 2015CB654902), the National Key Research and Development Program of China (Grant No. 2016YFB0700402), the Foundation for the Author of National Excellent Doctoral Dissertation, China (Grant No. 201141), the Tianjin Municipal Education Commission, China, the Tianjin Municipal Science and Technology Commission, China, and the Fundamental Research Fund of Tianjin University of Technology. This work made use of the resources of the National Center for Electron Microscopy in Beijing and Tsinghua National Laboratory for Information Science and Technology. |
Corresponding Authors:
Wen-Juan Yuan, Jing Zhu
E-mail: yuanwj@email.tjut.edu.cn;jzhu@mail.tsinghua.edu.cn
|
Cite this article:
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静) Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults 2019 Chin. Phys. B 28 078106
|
[1] |
Rümmeli M H, Rocha C G, Ortmann F, Ibrahim I, Sevincli H, Börrnert F, Kunstmann J, Bachmatiuk A, Pötschke M, Shiraishi M, Meyyappan M, Büchner B, Roche S and Cuniberti G 2011 Adv. Mater. 23 4471
|
[2] |
Sun X M, Zaric S, Daranciang D, Welsher K, Lu Y R, Li X L and Dai H J 2008 J. Am. Chem. Soc. 130 6551
|
[3] |
Zhou W, Lee J, Nanda J, Pantelides S T, Pennycook S J and Idrobo J C 2012 Nat. Nanotechnol. 7 161
|
[4] |
Li G, Cheng H W, Guo L F, Wang K Y and Cheng Z J 2018 Chin. Phys. Lett. 35 076801
|
[5] |
Luo J, Ouyang W G, Li X P, Jin Z, Yang L J, Chen C Q, Zhang J, Li Y, Warner J H, Peng L M, Zheng Q S and Zhu J 2012 Nano Lett. 12 3663
|
[6] |
Wang G, Long M Q and Zhang D 2017 Chin. Phys. Lett. 34 097303
|
[7] |
Li J S, Li Z B and Yao D X 2012 Chin. Phys. B 21 017302
|
[8] |
Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C and Cheng H M 2009 Adv. Mater. 21 1756
|
[9] |
Hu Y, He D W, Wang Y S, Duan J H, Wang S F, Fu M and Wang W S 2014 Chin. Phys. B 23 128103
|
[10] |
Luo J, Warner J H, Feng C Q, Yao Y G, Jin Z, Wang H L, Pan C F, Wang S, Yang L J, Li Y, Zhang J, Watt A A R, Peng L M, Zhu J and Briggs G A D 2010 Appl. Phys. Lett. 96 213113
|
[11] |
Luo J, Tian P, Pan C T, Robertson A W, Warner J H, Hill E W and Briggs G A D 2011 ACS Nano 5 1047
|
[12] |
Liang J T, Yan X H, Zhang Y and Xiao Y 2019 Acta Phys. Sin. 68 027101 (in Chinese)
|
[13] |
Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
|
[14] |
Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L and Muller D A 2011 Nature 469 389
|
[15] |
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
|
[16] |
Gong Y J, Liu Z, Lupini A R, Shi G, Lin J H, Najmaei S, Lin Z, Elías A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W and Ajayan P M 2014 Nano Lett. 14 442
|
[17] |
Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
|
[18] |
Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G and Wang F 2014 Nat. Commun. 5 4966
|
[19] |
Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M X, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q and Liu Z F 2013 Nano Lett. 13 3870
|
[20] |
Yeh P C, Jin W, Zaki N, Kunstmann J, Chenet D, Arefe G, Sadowski J T, Dadap J I, Sutter P, Hone J and Osgood R M 2016 Nano Lett. 16 953
|
[21] |
Warner J H, Rümmeli M H, Gemming T, Büchner B and Briggs G A D 2009 Nano Lett. 9 102
|
[22] |
Ke F, Yin X L, Tong N, Lin F, Liu N, Zhao R G, Fu L, Liu Z F and Hu Z H 2014 Chin. Phys. B 23 116801
|
[23] |
Reyes-Gasga J, Tehuacanero S and Yacamán M J 1998 Microsc. Res. Techniq. 40 2
|
[24] |
Kang J, Li J B, Li S S, Xia J B and Wang L W 2013 Nano Lett. 13 5485
|
[25] |
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
|
[26] |
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
|
[27] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[28] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Robertson A W, Bachmatiuk A, Wu Y A, Schäffel F, Rellinghaus B, Büchner B, Rümmeli M H and Warner J H 2011 ACS Nano 5 6610
|
[31] |
Börrnert F, Barreiro A, Wolf D, Katsnelson M I, Büchner B, Vandersypen L M K and Rümmeli M H 2012 Nano Lett. 12 4455
|
[32] |
Yang H P, Ouyang W G, Yan X X, Li Z C, Yu R, Yuan W J, Luo J and Zhu J 2018 AIP Adv. 8 115103
|
[33] |
Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739
|
[34] |
Shinjo T 2009 Nanomagnetism and Spintronics (Oxford and Amsterdam: Elsevier) pp. 93-153
|
[35] |
Sze S M and Ng K K 2007 Physics of Semiconductor Devices (3rd Edn.) (Hoboken: John Wiley & Sons) pp. 663-742
|
[36] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
|
[37] |
Rak Z, Rost C M, Lim M, Sarker P, Toher C, Curtarolo S, Maria J P and Brenner D W 2016 J. Appl. Phys. 120 095105
|
[38] |
Bader R F W 1985 Acc. Chem. Res. 18 9
|
[39] |
Vojvodic A, Hinnemann B and Norskov J L 2009 Phys. Rev. B 80 125416
|
[40] |
Shidpour R and Manteghian M 2010 Nanoscale 2 1429
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|