Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078106    DOI: 10.1088/1674-1056/28/7/078106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults

Hong-Ping Yang(杨宏平)1, Wen-Juan Yuan(原文娟)2, Jun Luo(罗俊)2, Jing Zhu(朱静)1
1 National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, the State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials(MOE), Tsinghua University, Beijing 100084, China;
2 Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Abstract  

Bilayer graphene quantum dots with rotational stacking faults (RSFs) having different rotational angles were studied. Using the first-principles calculation, we determined that these stacking faults could quantitatively modulate the magnetism and the distribution of spin and energy levels in the electronic structures of the dots. In addition, by examining the spatial distribution of unpaired spins and Bader charge analysis, we found that the main source of magnetic moment originated from the edge atoms of the quantum dots. Our research results can potentially provide a new path for producing all-carbon nanodevices with different electrical and magnetic properties.

Keywords:  bilayer graphene quantum dots      rotational stacking faults      first-principles calculation  
Received:  24 February 2019      Revised:  26 April 2019      Accepted manuscript online: 
PACS:  81.05.ub (Fullerenes and related materials)  
  81.05.ue (Graphene)  
  31.15.E (Density-functional theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374174, 51390471, 51527803, and 51701143), the National Basic Research Program of China (Grant No. 2015CB654902), the National Key Research and Development Program of China (Grant No. 2016YFB0700402), the Foundation for the Author of National Excellent Doctoral Dissertation, China (Grant No. 201141), the Tianjin Municipal Education Commission, China, the Tianjin Municipal Science and Technology Commission, China, and the Fundamental Research Fund of Tianjin University of Technology. This work made use of the resources of the National Center for Electron Microscopy in Beijing and Tsinghua National Laboratory for Information Science and Technology.

Corresponding Authors:  Wen-Juan Yuan, Jing Zhu     E-mail:  yuanwj@email.tjut.edu.cn;jzhu@mail.tsinghua.edu.cn

Cite this article: 

Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静) Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults 2019 Chin. Phys. B 28 078106

[1] Rümmeli M H, Rocha C G, Ortmann F, Ibrahim I, Sevincli H, Börrnert F, Kunstmann J, Bachmatiuk A, Pötschke M, Shiraishi M, Meyyappan M, Büchner B, Roche S and Cuniberti G 2011 Adv. Mater. 23 4471
[2] Sun X M, Zaric S, Daranciang D, Welsher K, Lu Y R, Li X L and Dai H J 2008 J. Am. Chem. Soc. 130 6551
[3] Zhou W, Lee J, Nanda J, Pantelides S T, Pennycook S J and Idrobo J C 2012 Nat. Nanotechnol. 7 161
[4] Li G, Cheng H W, Guo L F, Wang K Y and Cheng Z J 2018 Chin. Phys. Lett. 35 076801
[5] Luo J, Ouyang W G, Li X P, Jin Z, Yang L J, Chen C Q, Zhang J, Li Y, Warner J H, Peng L M, Zheng Q S and Zhu J 2012 Nano Lett. 12 3663
[6] Wang G, Long M Q and Zhang D 2017 Chin. Phys. Lett. 34 097303
[7] Li J S, Li Z B and Yao D X 2012 Chin. Phys. B 21 017302
[8] Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C and Cheng H M 2009 Adv. Mater. 21 1756
[9] Hu Y, He D W, Wang Y S, Duan J H, Wang S F, Fu M and Wang W S 2014 Chin. Phys. B 23 128103
[10] Luo J, Warner J H, Feng C Q, Yao Y G, Jin Z, Wang H L, Pan C F, Wang S, Yang L J, Li Y, Zhang J, Watt A A R, Peng L M, Zhu J and Briggs G A D 2010 Appl. Phys. Lett. 96 213113
[11] Luo J, Tian P, Pan C T, Robertson A W, Warner J H, Hill E W and Briggs G A D 2011 ACS Nano 5 1047
[12] Liang J T, Yan X H, Zhang Y and Xiao Y 2019 Acta Phys. Sin. 68 027101 (in Chinese)
[13] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[14] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L and Muller D A 2011 Nature 469 389
[15] Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
[16] Gong Y J, Liu Z, Lupini A R, Shi G, Lin J H, Najmaei S, Lin Z, Elías A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W and Ajayan P M 2014 Nano Lett. 14 442
[17] Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[18] Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G and Wang F 2014 Nat. Commun. 5 4966
[19] Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M X, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q and Liu Z F 2013 Nano Lett. 13 3870
[20] Yeh P C, Jin W, Zaki N, Kunstmann J, Chenet D, Arefe G, Sadowski J T, Dadap J I, Sutter P, Hone J and Osgood R M 2016 Nano Lett. 16 953
[21] Warner J H, Rümmeli M H, Gemming T, Büchner B and Briggs G A D 2009 Nano Lett. 9 102
[22] Ke F, Yin X L, Tong N, Lin F, Liu N, Zhao R G, Fu L, Liu Z F and Hu Z H 2014 Chin. Phys. B 23 116801
[23] Reyes-Gasga J, Tehuacanero S and Yacamán M J 1998 Microsc. Res. Techniq. 40 2
[24] Kang J, Li J B, Li S S, Xia J B and Wang L W 2013 Nano Lett. 13 5485
[25] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[26] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Robertson A W, Bachmatiuk A, Wu Y A, Schäffel F, Rellinghaus B, Büchner B, Rümmeli M H and Warner J H 2011 ACS Nano 5 6610
[31] Börrnert F, Barreiro A, Wolf D, Katsnelson M I, Büchner B, Vandersypen L M K and Rümmeli M H 2012 Nano Lett. 12 4455
[32] Yang H P, Ouyang W G, Yan X X, Li Z C, Yu R, Yuan W J, Luo J and Zhu J 2018 AIP Adv. 8 115103
[33] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[34] Shinjo T 2009 Nanomagnetism and Spintronics (Oxford and Amsterdam: Elsevier) pp. 93-153
[35] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (3rd Edn.) (Hoboken: John Wiley & Sons) pp. 663-742
[36] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[37] Rak Z, Rost C M, Lim M, Sarker P, Toher C, Curtarolo S, Maria J P and Brenner D W 2016 J. Appl. Phys. 120 095105
[38] Bader R F W 1985 Acc. Chem. Res. 18 9
[39] Vojvodic A, Hinnemann B and Norskov J L 2009 Phys. Rev. B 80 125416
[40] Shidpour R and Manteghian M 2010 Nanoscale 2 1429
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!