Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077301    DOI: 10.1088/1674-1056/28/7/077301
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and magnetic properties of CrI3 nanoribbons and nanotubes

Ji-Zhang Wang(王吉章)1,2, Jian-Qi Huang(黄建啟)1,2, Ya-Ning Wang(王雅宁)1,2, Teng Yang(杨腾)1, Zhi-Dong Zhang(张志东)1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract  

CrI3 in two-dimensional (2D) forms has been attracting much attention lately due to its novel magnetic properties at atomic large scale. The size and edge tuning of electronic and magnetic properties for 2D materials has been a promising way to broaden or even enhance their utility, as the case with nanoribbons/nanotubes in graphene, black phosphorus, and transition metal dichalcogenides. Here we studied the CrI3 nanoribbon (NR) and nanotube (NT) systematically to seek the possible size and edge control of the electronic and magnetic properties. We find that ferromagnetic ordering is stable in all the NR and NT structures of interest. An enhancement of the Curie temperature TC can be expected when the structure goes to NR or NT from its 2D counterpart. The energy difference between the FM and AFM states can be even improved by up to 3-4 times in a zigzag nanoribbon (ZZNR), largely because of the electronic instability arising from a large density of states of iodine-5p orbitals at EF. In NT structures, shrinking the tube size harvests an enhancement of spin moment by up to 4%, due to the reduced crystal-field gap and the re-balance between the spin majority and minority populations.

Keywords:  CrI3      nanoribbon      nanotube      magnetism  
Received:  11 April 2019      Revised:  10 May 2019      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  61.46.-w (Structure of nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0206301) and the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204).

Corresponding Authors:  Teng Yang     E-mail:  yangteng@imr.ac.cn

Cite this article: 

Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东) Electronic and magnetic properties of CrI3 nanoribbons and nanotubes 2019 Chin. Phys. B 28 077301

[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[2] Bora C, Bharali P, Baglari S, Dolui S and Konwar B 2013 Comps. Sci. Technol. 87 1
[3] Novoselov K S, Geim A K, Morozov S V, Y. Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[8] Xiao D, Liu G B, Feng W, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[9] Espinosa A, Munoz-Noval A, Garcia-Hernandez M, Serrano A, de la Morena J, Figuerola A, Quarta A, Pellegrino T, Wilhelm C and Garcia M 2013 J. Nanopart. Res. 15 1514
[10] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[11] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[12] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[13] Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J N, Jia S, Xie X C, Li Y and Han W 2017 2D Mater. 4 024009
[14] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[15] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[16] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J and Jarillo-Herrero P 2018 Science 360 1218
[17] Zhang Z D 2007 Philosophical Magazine 87 5309
[18] Zhang Z D, Suzuki O and March N H 2019 Advances in Applied Clifford Algebras 29 12
[19] Zhang Z D 2013 Chin. Phys. B 22 030513
[20] Huang B, Clark G, Klein D R, MacNeill D, NavarroMoratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544
[21] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[22] Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, JarilloHerrero P and Xu X D 2018 Nat. Phys. 14 277
[23] Dekker C 1999 Phys. Today 52 22
[24] Lieber C M 1998 Solid State Commun. 107 607
[25] Dresselhaus M S, Dresslhaus G and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
[26] Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[27] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[28] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[29] Ataca C, Sahin H, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[30] Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
[31] Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
[32] Mihailovic D 2009 Prog. Mater. Sci. 54 309
[33] Han X, Stewart H M, Shevlin S A, Catlow C R A and Guo Z X 2014 Nano Lett. 14 4607
[34] Jiang W, Li S J, Liu H T, Lu G, Zheng F W and Zhang P 2019 Phys. Lett. A 383 754
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Kresse G and Furthmüller J 2006 Phys. Rev. B 54 11169
[37] Monkhorst H J and Pack J D 2006 Phys. Rev. B 13 5188
[38] Liu J Y, Sun Q, Kawazoe Y and Jena P 2006 Phys. Chem. Chem. Phys. 18 8777
[39] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[40] Jorio A, Dresselhaus M, Saito R and Dresselhaus G 2011 Raman Spectroscopy in Graphene Related Systems (New York: WileyVCH)
[41] Grüneis A, Saito R, Samsonidze G G, Kimura T, Pimenta M A, Jorio A, Souza Filho A G, Dresselhaus G and Dresselhaus M S 2006 Phys. Rev. B 67 165402
[42] Saito R, Nugraha A, Hasdeo E, Siregar S, Guo H H and Yang T 2015 Phys. Status Solidi B 252 2363
[43] Stöhr J and Siegmann H C 2006 Magnetism from Fundamentals to Nanoscale Dynamics (Berlin: Springer)
[44] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[11] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[15] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
No Suggested Reading articles found!