Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic and magnetic properties of CrI3 nanoribbons and nanotubes |
Ji-Zhang Wang(王吉章)1,2, Jian-Qi Huang(黄建啟)1,2, Ya-Ning Wang(王雅宁)1,2, Teng Yang(杨腾)1, Zhi-Dong Zhang(张志东)1 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
|
Abstract CrI3 in two-dimensional (2D) forms has been attracting much attention lately due to its novel magnetic properties at atomic large scale. The size and edge tuning of electronic and magnetic properties for 2D materials has been a promising way to broaden or even enhance their utility, as the case with nanoribbons/nanotubes in graphene, black phosphorus, and transition metal dichalcogenides. Here we studied the CrI3 nanoribbon (NR) and nanotube (NT) systematically to seek the possible size and edge control of the electronic and magnetic properties. We find that ferromagnetic ordering is stable in all the NR and NT structures of interest. An enhancement of the Curie temperature TC can be expected when the structure goes to NR or NT from its 2D counterpart. The energy difference between the FM and AFM states can be even improved by up to 3-4 times in a zigzag nanoribbon (ZZNR), largely because of the electronic instability arising from a large density of states of iodine-5p orbitals at EF. In NT structures, shrinking the tube size harvests an enhancement of spin moment by up to 4%, due to the reduced crystal-field gap and the re-balance between the spin majority and minority populations.
|
Received: 11 April 2019
Revised: 10 May 2019
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0206301) and the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204). |
Corresponding Authors:
Teng Yang
E-mail: yangteng@imr.ac.cn
|
Cite this article:
Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东) Electronic and magnetic properties of CrI3 nanoribbons and nanotubes 2019 Chin. Phys. B 28 077301
|
[1] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[2] |
Bora C, Bharali P, Baglari S, Dolui S and Konwar B 2013 Comps. Sci. Technol. 87 1
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Y. Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[4] |
Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[5] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[6] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[7] |
Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[8] |
Xiao D, Liu G B, Feng W, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[9] |
Espinosa A, Munoz-Noval A, Garcia-Hernandez M, Serrano A, de la Morena J, Figuerola A, Quarta A, Pellegrino T, Wilhelm C and Garcia M 2013 J. Nanopart. Res. 15 1514
|
[10] |
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
|
[11] |
Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
|
[12] |
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
|
[13] |
Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J N, Jia S, Xie X C, Li Y and Han W 2017 2D Mater. 4 024009
|
[14] |
Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
|
[15] |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
|
[16] |
Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J and Jarillo-Herrero P 2018 Science 360 1218
|
[17] |
Zhang Z D 2007 Philosophical Magazine 87 5309
|
[18] |
Zhang Z D, Suzuki O and March N H 2019 Advances in Applied Clifford Algebras 29 12
|
[19] |
Zhang Z D 2013 Chin. Phys. B 22 030513
|
[20] |
Huang B, Clark G, Klein D R, MacNeill D, NavarroMoratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544
|
[21] |
Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
|
[22] |
Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, JarilloHerrero P and Xu X D 2018 Nat. Phys. 14 277
|
[23] |
Dekker C 1999 Phys. Today 52 22
|
[24] |
Lieber C M 1998 Solid State Commun. 107 607
|
[25] |
Dresselhaus M S, Dresslhaus G and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
|
[26] |
Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
|
[27] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[28] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[29] |
Ataca C, Sahin H, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
|
[30] |
Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
|
[31] |
Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
|
[32] |
Mihailovic D 2009 Prog. Mater. Sci. 54 309
|
[33] |
Han X, Stewart H M, Shevlin S A, Catlow C R A and Guo Z X 2014 Nano Lett. 14 4607
|
[34] |
Jiang W, Li S J, Liu H T, Lu G, Zheng F W and Zhang P 2019 Phys. Lett. A 383 754
|
[35] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[36] |
Kresse G and Furthmüller J 2006 Phys. Rev. B 54 11169
|
[37] |
Monkhorst H J and Pack J D 2006 Phys. Rev. B 13 5188
|
[38] |
Liu J Y, Sun Q, Kawazoe Y and Jena P 2006 Phys. Chem. Chem. Phys. 18 8777
|
[39] |
Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
|
[40] |
Jorio A, Dresselhaus M, Saito R and Dresselhaus G 2011 Raman Spectroscopy in Graphene Related Systems (New York: WileyVCH)
|
[41] |
Grüneis A, Saito R, Samsonidze G G, Kimura T, Pimenta M A, Jorio A, Souza Filho A G, Dresselhaus G and Dresselhaus M S 2006 Phys. Rev. B 67 165402
|
[42] |
Saito R, Nugraha A, Hasdeo E, Siregar S, Guo H H and Yang T 2015 Phys. Status Solidi B 252 2363
|
[43] |
Stöhr J and Siegmann H C 2006 Magnetism from Fundamentals to Nanoscale Dynamics (Berlin: Springer)
|
[44] |
McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|