|
|
A simple rule for finding Dirac cones in bilayered perovskites |
Xuejiao Chen(陈雪娇)1,2, Lei Liu(刘雷)1, Dezhen Shen(申德振)1 |
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A simple rule for finding Dirac cone electronic states in solids is proposed, which is neglecting those lattice atoms inert to particular electronic bands, and pursuing the two-dimensional (2D) graphene-like quasi-atom lattices with s- and p-bindings by considering the equivalent atom groups in the unit cell as quasi-atoms. Taking CsPbBr3 and Cs3Bi2Br9 bilayers as examples, we prove the effectiveness and generality of this rule with the density functional theory (DFT) calculations. We demonstrate that both bilayers have Dirac cones around the Fermi level and reveal that their corresponding Fermi velocities can reach as high as~0.2×106 m/s. This makes these new 2D layered materials very promising in making new ultra-fast ionic electronic devices.
|
Received: 31 May 2019
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61525404). |
Corresponding Authors:
Lei Liu, Dezhen Shen
E-mail: liulei@ciomp.ac.cn;shendz@ciomp.ac.cn
|
Cite this article:
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振) A simple rule for finding Dirac cones in bilayered perovskites 2019 Chin. Phys. B 28 077106
|
[32] |
Moller C K 1958 Nature 182 1436
|
[1] |
Wallace P R 1947 Phys. Rev. 71 622
|
[33] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[34] |
Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
|
[3] |
Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[35] |
Lazarini F 1977 Acta Cryst. B33 2961
|
[4] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[36] |
Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E and Melot B C 2017 Inorg. Chem. 56 42
|
[5] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
|
[37] |
Singh A, Boopathi K M, Mohapatra A, Chen Y F, Li G and Chu C W 2018 ACS Appl. Mater. Interfaces 10 2566
|
[6] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[7] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[8] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[9] |
Geim A K 2009 Science 324 1530
|
[10] |
Neto Castro A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[11] |
Brumfiel G 2009 Nature 458 390
|
[12] |
Service R F 2009 Science 324 875
|
[13] |
Editorial 2010 Nat. Nanotech. 5 755
|
[14] |
Kim P 2010 Nat. Mater. 9 792
|
[15] |
Novoselov K S, Falcko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
|
[16] |
Service R F 2015 Science 348 490
|
[17] |
Gibney E 2018 Nautre 555 151
|
[18] |
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
|
[19] |
Xu Q, Ma T, Danesh M, Shivananju B N, Gan S, Song J, Qiu C W, Cheng H M, Ren W and Bao Q 2017 Light Sci. Appl. 6 e16204
|
[20] |
Zheng Z B, Li J T, Ma T, Fang H L, Ren W C, Chen J, She J C, Zhang Y, Liu F, Chen H J, Deng S Z and Xu N S 2017 Light Sci. Appl. 6 e17057
|
[21] |
Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804
|
[22] |
Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[23] |
Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z and Du A 2016 Nano Lett. 16 3022
|
[24] |
Wang J, Deng S, Liu Z and Liu Z 2015 Nat. Sci. Rev. 2 22
|
[25] |
Chen X J, Hand D, Su Y, Zeng Q H, Liu L and Shen D Z 2018 Phys. Status Solidi RRL 12 1800193
|
[26] |
Chen X J, Liu L and Shen D Z 2018 J. Phys.: Condens. Matter 30 265501
|
[27] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[30] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[31] |
Kresse G and Joubert D 1996 Phys. Rev. B 54 11169)
|
[32] |
Moller C K 1958 Nature 182 1436
|
[33] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[34] |
Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
|
[35] |
Lazarini F 1977 Acta Cryst. B33 2961
|
[36] |
Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E and Melot B C 2017 Inorg. Chem. 56 42
|
[37] |
Singh A, Boopathi K M, Mohapatra A, Chen Y F, Li G and Chu C W 2018 ACS Appl. Mater. Interfaces 10 2566
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|