Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077106    DOI: 10.1088/1674-1056/28/7/077106
RAPID COMMUNICATION Prev   Next  

A simple rule for finding Dirac cones in bilayered perovskites

Xuejiao Chen(陈雪娇)1,2, Lei Liu(刘雷)1, Dezhen Shen(申德振)1
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A simple rule for finding Dirac cone electronic states in solids is proposed, which is neglecting those lattice atoms inert to particular electronic bands, and pursuing the two-dimensional (2D) graphene-like quasi-atom lattices with s- and p-bindings by considering the equivalent atom groups in the unit cell as quasi-atoms. Taking CsPbBr3 and Cs3Bi2Br9 bilayers as examples, we prove the effectiveness and generality of this rule with the density functional theory (DFT) calculations. We demonstrate that both bilayers have Dirac cones around the Fermi level and reveal that their corresponding Fermi velocities can reach as high as~0.2×106 m/s. This makes these new 2D layered materials very promising in making new ultra-fast ionic electronic devices.

Keywords:  Dirac cone      perovskites      graphene      density functional theory  
Received:  31 May 2019      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.Pr (Electronic structure of graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61525404).

Corresponding Authors:  Lei Liu, Dezhen Shen     E-mail:  liulei@ciomp.ac.cn;shendz@ciomp.ac.cn

Cite this article: 

Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振) A simple rule for finding Dirac cones in bilayered perovskites 2019 Chin. Phys. B 28 077106

[32] Moller C K 1958 Nature 182 1436
[1] Wallace P R 1947 Phys. Rev. 71 622
[33] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[34] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[35] Lazarini F 1977 Acta Cryst. B33 2961
[4] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[36] Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E and Melot B C 2017 Inorg. Chem. 56 42
[5] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[37] Singh A, Boopathi K M, Mohapatra A, Chen Y F, Li G and Chu C W 2018 ACS Appl. Mater. Interfaces 10 2566
[6] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[8] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[9] Geim A K 2009 Science 324 1530
[10] Neto Castro A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[11] Brumfiel G 2009 Nature 458 390
[12] Service R F 2009 Science 324 875
[13] Editorial 2010 Nat. Nanotech. 5 755
[14] Kim P 2010 Nat. Mater. 9 792
[15] Novoselov K S, Falcko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[16] Service R F 2015 Science 348 490
[17] Gibney E 2018 Nautre 555 151
[18] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[19] Xu Q, Ma T, Danesh M, Shivananju B N, Gan S, Song J, Qiu C W, Cheng H M, Ren W and Bao Q 2017 Light Sci. Appl. 6 e16204
[20] Zheng Z B, Li J T, Ma T, Fang H L, Ren W C, Chen J, She J C, Zhang Y, Liu F, Chen H J, Deng S Z and Xu N S 2017 Light Sci. Appl. 6 e17057
[21] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804
[22] Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[23] Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z and Du A 2016 Nano Lett. 16 3022
[24] Wang J, Deng S, Liu Z and Liu Z 2015 Nat. Sci. Rev. 2 22
[25] Chen X J, Hand D, Su Y, Zeng Q H, Liu L and Shen D Z 2018 Phys. Status Solidi RRL 12 1800193
[26] Chen X J, Liu L and Shen D Z 2018 J. Phys.: Condens. Matter 30 265501
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[31] Kresse G and Joubert D 1996 Phys. Rev. B 54 11169)
[32] Moller C K 1958 Nature 182 1436
[33] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[34] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
[35] Lazarini F 1977 Acta Cryst. B33 2961
[36] Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E and Melot B C 2017 Inorg. Chem. 56 42
[37] Singh A, Boopathi K M, Mohapatra A, Chen Y F, Li G and Chu C W 2018 ACS Appl. Mater. Interfaces 10 2566
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
No Suggested Reading articles found!