CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice |
Xin Li(李欣)1,2, Rong Yu(俞榕)3, Qimiao Si4 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
4 Department of Physics & Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA |
|
|
Abstract Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin-orbit coupling, we study the interplay among the spin-orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice. We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators. We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions. In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases. Due to the competition between the spin-orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane. The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin-orbit couplings.
|
Received: 16 March 2019
Revised: 22 April 2019
Accepted manuscript online:
|
PACS:
|
71.10.Hf
|
(Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the Ministry of Science and Technology of China, the National Key R&D Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11674392), and the Research Funds of Remnin University of China (Grant No. 18XNLG24). Work at Rice was in part supported by the NSF Grant DMR-1920740 and the Robert A. Welch Foundation Grant C-1411. Q. S. acknowledges the hospitality and support by a Ulam Scholarship from the Center for Nonlinear Studies at Los Alamos National Laboratory. |
Corresponding Authors:
Rong Yu
E-mail: rong.yu@ruc.edu.cn
|
Cite this article:
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice 2019 Chin. Phys. B 28 077102
|
[1] |
Löhneysen H 2010 J. Low Temp. Phys. 161 1
|
[2] |
Sachdev S 1999 Quantum Phase Transitions (New York: Cambridge University Press)
|
[3] |
Si Q and Steglich F 2010 Science 329 1161
|
[4] |
Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
|
[5] |
Löhneysen H von, Rosch A, Vojta M and Wolfle P 2007 Rev. Mod. Phys. 79 1015
|
[6] |
Tsunetsugu H, Sigrist M and Ueda K 1997 Rev. Mod. Phys. 69 809
|
[7] |
Yang Y F and Yu L 2015 Acta Phys. Sin. 64 217401 (in Chinese)
|
[8] |
Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
|
[9] |
Doniach S 1977 Physica B+C 91 231
|
[10] |
Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
|
[11] |
Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, L?hneysen H v, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
|
[12] |
Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
|
[13] |
Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
|
[14] |
Coleman P, Pépin C, Si Q and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723
|
[15] |
Hertz J A 1976 Phys. Rev. B 14 1165
|
[16] |
Millis A J 1993 Phys. Rev. B 48 7183
|
[17] |
Si Q 2006 Physica B 378 23
|
[18] |
Si Q 2010 Phys. Stat. Solid. B 247 476
|
[19] |
Pixley J H, Yu R and Si Q 2014 Phys. Rev. Lett. 113 176402
|
[20] |
Si Q and Paschen S 2013 Phys. Stat. Solid. (b) 250 425
|
[21] |
Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
|
[22] |
Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J v, Balicas L, Millican J N, Macaluso R T and Chan J Y 2006 Phys. Rev. Lett. 96 087204
|
[23] |
Chen G 2017 Phys. Rev. B 94 205107
|
[24] |
Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
|
[25] |
Barla A, Derr J, Sanchez J P, Salce B, Lapertot G, Doyle B P, Rüffer R, Lengsdorf R, Abd-Elmeguid M M and Flouquet J 2005 Phys. Rev. Lett. 94 166401
|
[26] |
Yamamoto S J and Si Q 2010 J. Low Temp. Phys. 161 233
|
[27] |
Lai H H, Grefe S E, Paschen S and Si Q 2018 Pro. Natl. Acad. Sci. USA 115 93
|
[28] |
Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Svagera R, Waas M, Prokofiev A, Si Q and Paschen S 2017 Phys. Rev. Lett. 118 246601
|
[29] |
Dzsaber S, Yan X, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q and Paschen S 2018 arXiv:1811.02819
|
[30] |
Feng X Y, Chung C H, Dai J and Si Q 2013 Phys. Rev. Lett. 111 016402
|
[31] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[32] |
Feng X Y, Zhong H, Dai J and Si Q 2016 arXiv:1605.02380
|
[33] |
Haldane F D M 1988 Phys. Rev. Lett. 61 2015
|
[34] |
Zhong Y, Wang Y F, Wang Y Q and Luo H G 2013 Phys. Rev. B 87 035128
|
[35] |
Lacroix C and Cyrot M 1979 Phys. Rev. B 20 1969
|
[36] |
Li H, Liu Y, Zhang G M and Yu L 2015 J. Phys.: Condens. Matter 27 425601
|
[37] |
Li H, Song H F and Liu Y 2016 Euro. Phys. Lett. 116 37005
|
[38] |
Ganesh R, Brink J van den and Nishimoto S 2013 Phys. Rev. Lett. 110 127203
|
[39] |
Clark B K, Abanin D A and Sondhi S L 2011 Phys. Rev. Lett. 107 087204
|
[40] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[41] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[42] |
Pixley J H, Yu R, Paschen S and Si Q 2018 Phys. Rev. B 98 085110
|
[43] |
Zhou Y, Wu Q, Rosa P F S, Yu R, Guo J, Yi W, Zhang S, Wang Z, Wang H, Cai S, Yang K, Li A, Jiang Z, Zhang S, Wei X, Huang Y, Yang Y F, Fisk Z, Si Q, Sun L and Zhao Z 2017 Sci. Bull. 62 1439
|
[44] |
Kasaya M, Tani T, Iga F and Kasuya T 1988 J. Magn. Magn. Mater. 76&77 278
|
[45] |
Malik S K, Adroja D T, Dhar S K, Vijayaraghavan R and Padalia B D 1989 Phys. Rev. B 40 2414
|
[46] |
Adroja D T and Rainford B D 1994 Physica B 194-196 363
|
[47] |
Hu J, Alicea J, Wu R, and Franz M 2012 Phys. Rev. Lett. 109 266801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|