Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077102    DOI: 10.1088/1674-1056/28/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice

Xin Li(李欣)1,2, Rong Yu(俞榕)3, Qimiao Si4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
4 Department of Physics & Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
Abstract  

Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin-orbit coupling, we study the interplay among the spin-orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice. We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators. We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions. In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases. Due to the competition between the spin-orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane. The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin-orbit couplings.

Keywords:  heavy fermion system      Kondo insulator      spin-orbit coupling  
Received:  16 March 2019      Revised:  22 April 2019      Accepted manuscript online: 
PACS:  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: 

Project supported by the Ministry of Science and Technology of China, the National Key R&D Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11674392), and the Research Funds of Remnin University of China (Grant No. 18XNLG24). Work at Rice was in part supported by the NSF Grant DMR-1920740 and the Robert A. Welch Foundation Grant C-1411. Q. S. acknowledges the hospitality and support by a Ulam Scholarship from the Center for Nonlinear Studies at Los Alamos National Laboratory.

Corresponding Authors:  Rong Yu     E-mail:  rong.yu@ruc.edu.cn

Cite this article: 

Xin Li(李欣), Rong Yu(俞榕), Qimiao Si Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice 2019 Chin. Phys. B 28 077102

[1] Löhneysen H 2010 J. Low Temp. Phys. 161 1
[2] Sachdev S 1999 Quantum Phase Transitions (New York: Cambridge University Press)
[3] Si Q and Steglich F 2010 Science 329 1161
[4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[5] Löhneysen H von, Rosch A, Vojta M and Wolfle P 2007 Rev. Mod. Phys. 79 1015
[6] Tsunetsugu H, Sigrist M and Ueda K 1997 Rev. Mod. Phys. 69 809
[7] Yang Y F and Yu L 2015 Acta Phys. Sin. 64 217401 (in Chinese)
[8] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[9] Doniach S 1977 Physica B+C 91 231
[10] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[11] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, L?hneysen H v, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[12] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
[13] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[14] Coleman P, Pépin C, Si Q and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723
[15] Hertz J A 1976 Phys. Rev. B 14 1165
[16] Millis A J 1993 Phys. Rev. B 48 7183
[17] Si Q 2006 Physica B 378 23
[18] Si Q 2010 Phys. Stat. Solid. B 247 476
[19] Pixley J H, Yu R and Si Q 2014 Phys. Rev. Lett. 113 176402
[20] Si Q and Paschen S 2013 Phys. Stat. Solid. (b) 250 425
[21] Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[22] Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J v, Balicas L, Millican J N, Macaluso R T and Chan J Y 2006 Phys. Rev. Lett. 96 087204
[23] Chen G 2017 Phys. Rev. B 94 205107
[24] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[25] Barla A, Derr J, Sanchez J P, Salce B, Lapertot G, Doyle B P, Rüffer R, Lengsdorf R, Abd-Elmeguid M M and Flouquet J 2005 Phys. Rev. Lett. 94 166401
[26] Yamamoto S J and Si Q 2010 J. Low Temp. Phys. 161 233
[27] Lai H H, Grefe S E, Paschen S and Si Q 2018 Pro. Natl. Acad. Sci. USA 115 93
[28] Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Svagera R, Waas M, Prokofiev A, Si Q and Paschen S 2017 Phys. Rev. Lett. 118 246601
[29] Dzsaber S, Yan X, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q and Paschen S 2018 arXiv:1811.02819
[30] Feng X Y, Chung C H, Dai J and Si Q 2013 Phys. Rev. Lett. 111 016402
[31] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[32] Feng X Y, Zhong H, Dai J and Si Q 2016 arXiv:1605.02380
[33] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[34] Zhong Y, Wang Y F, Wang Y Q and Luo H G 2013 Phys. Rev. B 87 035128
[35] Lacroix C and Cyrot M 1979 Phys. Rev. B 20 1969
[36] Li H, Liu Y, Zhang G M and Yu L 2015 J. Phys.: Condens. Matter 27 425601
[37] Li H, Song H F and Liu Y 2016 Euro. Phys. Lett. 116 37005
[38] Ganesh R, Brink J van den and Nishimoto S 2013 Phys. Rev. Lett. 110 127203
[39] Clark B K, Abanin D A and Sondhi S L 2011 Phys. Rev. Lett. 107 087204
[40] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[41] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[42] Pixley J H, Yu R, Paschen S and Si Q 2018 Phys. Rev. B 98 085110
[43] Zhou Y, Wu Q, Rosa P F S, Yu R, Guo J, Yi W, Zhang S, Wang Z, Wang H, Cai S, Yang K, Li A, Jiang Z, Zhang S, Wei X, Huang Y, Yang Y F, Fisk Z, Si Q, Sun L and Zhao Z 2017 Sci. Bull. 62 1439
[44] Kasaya M, Tani T, Iga F and Kasuya T 1988 J. Magn. Magn. Mater. 76&77 278
[45] Malik S K, Adroja D T, Dhar S K, Vijayaraghavan R and Padalia B D 1989 Phys. Rev. B 40 2414
[46] Adroja D T and Rainford B D 1994 Physica B 194-196 363
[47] Hu J, Alicea J, Wu R, and Franz M 2012 Phys. Rev. Lett. 109 266801
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!