Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn |
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣) |
State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract We investigate the critical exponents and magnetocaloric effect of Co2-xZrSn polycrystal. The Co2-xZrSn undergoes a second-order ferromagnetism phase transition around the Curie temperature of Tc~280 K. The critical behavior in the vicinity of the magnetic phase transition has been investigated by using modified Arrott plot and Kouvel-Fisher methods. The obtained critical exponents, β, γ, and δ can be well described by the scaling theory. The determined exponents of Co2-xZrSn obey the mean-field model with a long-range magnetic interaction. In addition, the maximum magnetic entropy change -ΔSMmax of Co2-xZrSn is about 0.57 J·kg-1·K-1 and the relative cooling power (RCP) is 14.68 J·kg-1 at 50 kOe (1 Oe=79.5775 A·m-1).
|
Received: 22 February 2019
Revised: 29 March 2019
Accepted manuscript online:
|
PACS:
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.20.En
|
(Metals and alloys)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017RC20) and the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications. |
Corresponding Authors:
Xiao Zhang, Ming Lei
E-mail: zhangxiaobupt@bupt.edu.cn;mlei@bupt.edu.cn
|
Cite this article:
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣) Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn 2019 Chin. Phys. B 28 067501
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
|
[4] |
Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
|
[5] |
Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[6] |
Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
|
[7] |
Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
|
[8] |
Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[9] |
Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
|
[10] |
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
|
[11] |
Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H and Hasan M Z 2016 Sci. Rep. 6 38839
|
[12] |
Manna K, Sun Y, Muechler L, Kübler J and Felser C 2018 Nat. Rev. Mat. 3 244
|
[13] |
Kübler J and Felser C 2016 Europhys. Lett. 114 47005
|
[14] |
Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161
|
[15] |
Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
|
[16] |
Fecher G H, Kandpal H C, Wurmehl S, Felser C and Schönhense G 2006 J. Appl. Phys. 99 08J106
|
[17] |
Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507
|
[18] |
Coey J M D, Venkatesan M 2002 J. Appl. Phys. 91 8345
|
[19] |
Kushwaha S K, Stolze K, Wang Z, Hirschberger M, Lin J, Bernevig B A, Ong N P and Cava R J 2017 J. Phys.: Condens. Matter 29 225702
|
[20] |
De Groot R A, Mueller F M, Engen P G and Buschow K H 1983 Phys. Rev. Lett. 50 2024
|
[21] |
Kushwaha S K, Wang Z, Kong T and Cava R J 2018 J. Phys.: Condens. Matter 30 075701
|
[22] |
Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
|
[23] |
Banerjee B K 1964 Phys. Lett. 12 16
|
[24] |
Bruker AXS. TOPAS Version 4.2 2009 Bruker AXS, Karlsruhe, Germany
|
[25] |
Stanley H E 1971 Introduction to Phase transitions and critical phenomena (London: Clarendon Press) p. 7
|
[26] |
Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786
|
[27] |
Fan J, Ling L, Hong B, Zhang L, Pi L and Zhang Y 2010 Phys. Rev. B 81 144426
|
[28] |
Fisher M E 1967 Rep. Prog. Phys. 30 615
|
[29] |
Kouvel J S and Fisher M E 1964 Phys. Rev. A 136 A1626
|
[30] |
Widom B 1965 J. Chem. Phys. 43 3898
|
[31] |
Fischer S F, Kaul S N and Kronmuller H 2002 Phys. Rev. B 65 064443
|
[32] |
Gschneidner Jr. K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[33] |
Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
|
[34] |
Han H, Menzel D, Liua W, Ling L, Dua H, Pi L, Zhanga C, Zhang L and Zhang Y 2017 Mater. Res. Bull. 94 500
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|