Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056301    DOI: 10.1088/1674-1056/28/5/056301
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)

Yi-Meng Wang(王艺朦)1, Jian-Feng Zhang(张建丰)1, Cheng-He Li(李承贺)1, Xiao-Li Ma(马肖莉)2, Jian-Ting Ji(籍建葶)2, Feng Jin(金峰)1, He-Chang Lei(雷和畅)1, Kai Liu(刘凯)1, Wei-Lu Zhang(张玮璐)3, Qing-Ming Zhang(张清明)2,4
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
4 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  

We report a comprehensive Raman scattering study on layered MPS3 (M=Mn, Fe, Ni), a two-dimensional magnetic compound with weak van der Waals interlayer coupling. The observed Raman phonon modes have been well assigned by the combination of first-principles calculations and the polarization-resolved spectra. Careful symmetry analysis on the angle-dependent spectra demonstrates that the crystal symmetry is strictly described by C2h but can be simplified to D3d with good accuracy. Interestingly, the three compounds share exactly the same lattice structure but show distinct magnetic structures. This provides us with a unique opportunity to study the effect of different magnetic orders on lattice dynamics in MPS3. Our results reveal that the in-plane Néel antiferromagnetic (AF) order in MnPS3 favors a spin-phonon coupling compared to the in-plane zig-zag AF in NiPS3 and FePS3. We have discussed the mechanism in terms of the folding of magnetic Brillouin zones. Our results provide insights into the relation between lattice dynamics and magnetism in the layered MPX3 (M=transition metal, X=S, Se) family and shed light on the magnetism of monolayer MPX3 materials.

Keywords:  Raman scattering      two-dimensional magnetic van der Waals materials      lattice dynamics      magnetism  
Received:  12 February 2019      Revised:  16 March 2019      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300504 and 2017YFA0302904), the National Natural Science Foundation of China (Grant Nos. 11474357 and 11774419), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 14XNLQ03).

Corresponding Authors:  Qing-Ming Zhang     E-mail:  qmzhang@ruc.edu.cn

Cite this article: 

Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明) Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni) 2019 Chin. Phys. B 28 056301

[1] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[2] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[3] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[4] McGuire M A 2017 Crystals 7 121
[5] Zhong D, Seyler K L, Xia Y, Lin P, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Wang Y, Xiao D, Fu C K M and Xu X D 2017 Sci. Adv. 3 e1603113
[6] Bernasconi M, Marra G L, Benedek G, Miglio L, Jouanne M, Julien C, Scagliotti M and Balkanski M 1988 Phys. Rev. B 38 12089
[7] Dresselhaus M S 1986 Intercalation in Layered Materials (New York: Plenum) p. 93
[8] Chittari B, Park Y, Lee D, Han M, MacDonald A H, Wang E H and Jung J 2016 Phys. Rev. B 94 184428
[9] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[10] Flem G L, Brec R, Ouvrard G, Louisy A and Segransen P 1982 J. Phys. Chem. Solids 43 455
[11] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
[12] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. 110 3738
[13] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Hoh T W and Park J G 2016 Sci. Rep. 6 20904
[14] Lee J U, Lee S, Ryoo J, Kang S, Kim T, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[15] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[16] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[17] Dziaugys A, Banys J and Vysochanskii Y 2013 Ferroelectrics 447 1
[18] Evans J S O, O'Hare D, Clement R, Leaustic A and Thuéry P 1995 Adv. Mater. 7 735
[19] Frindt R F, Yang D and Westreich P 2005 J. Mater. Res. 20 1107
[20] Makimura C, Sekine T, Tanokura Y and Kurosawa K 1993 J. Phys. Condens. Matter 5 623
[21] Piryatinskaya V G, Kachur I S, Slavin V V, Yeremenko A V and Vysochanskii Y M 2012 Low Temp. Phys. 38 870
[22] Wildes A R, Harris M J and Godfrey K W 1998 J. Magn. Magn. Mater. 177-181 143
[23] Wildes A R, Kennedy S J and Hicks T J 1994 J. Phys. Condens. Matter 6 L335
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[31] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[32] Zhang A M, Liu K, He J B, Wang D M, Chen G F, Norm, B and Zhang Q M 2012 Phys. Rev. B 86 134502
[33] Kokalj A 2003 Comp. Mater. Sci. 28 155
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[11] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[12] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[13] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[14] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[15] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
No Suggested Reading articles found!