|
|
Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate |
Guangyi Chen(陈光毅)1, Yu Zhang(张玉)2, Shaomian Qi(齐少勉)1, and Jian-Hao Chen(陈剑豪)1,2,3,4,† |
1 International Center of Quantum Material, School of Physics, Peking University, Beijing 100871, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China; 4 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China |
|
|
Abstract Since the discovery of magnetism in two dimensions, effective manipulation of magnetism in van der Waals magnets has always been a crucial goal. Ionic gating is a promising method for such manipulation, yet devices gated with conventional ionic liquid may have some restrictions in applications due to the liquid nature of the gate dielectric. Lithium-ion conducting glass-ceramics (LICGC), a solid Li+ electrolyte, could be used as a substrate while simultaneously acts as a promising substitute for ionic liquid. Here we demonstrate that the ferromagnetism of Fe3GeTe2 (FGT) could be modulated via LICGC. By applying a voltage between FGT and the back side of LICGC substrate, Li+ doping occurs and causes the decrease of the coercive field (Hc) and ferromagnetic transition temperature (Tc) in FGT nanoflakes. A modulation efficiency for Hc of up to ~ 24.6% under Vg = 3.5 V at T =100 K is achieved. Our results provide another method to construct electrically-controlled magnetoelectronics, with potential applications in future information technology.
|
Received: 29 June 2021
Revised: 03 July 2021
Accepted manuscript online: 12 July 2021
|
PACS:
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
85.70.-w
|
(Magnetic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308402 and 2018YFA0305604), the National Natural Science Foundation of China (Grant Nos. 11934001, 11774010, and 11921005), and Beijing Municipal Natural Science Foundation, China (Grant No. JQ20002). |
Corresponding Authors:
Jian-Hao Chen
E-mail: chenjianhao@pku.edu.cn
|
Cite this article:
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪) Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate 2021 Chin. Phys. B 30 097504
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [3] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 [4] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [5] Wang Z, Zhang T, Ding M, et al. 2018 Nat. Nanotechnol. 13 554 [6] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X 2018 Nat. Nanotechnol. 13 544 [8] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549 [9] Wang Z, Gutierrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoglu A, Giannini E and Morpurgo A F 2018 Nat. Commun. 9 2516 [10] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554 [11] Zhuang H L L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 [12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [13] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [14] Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711 [15] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 12 757 [16] Benedikt S, Xu G F, Alex M A and Igor Ž 2017 Phys. Rev. Lett. 119 127403 [17] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K C and Xu X 2017 Sci. Adv. 3 e1603113 [18] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501 [19] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504 [20] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802 [21] Liu L W, Hu C C, Xu Y C, Huang H B, Cao J W, Liang L and Rao W F 2018 Chin. Phys. B 27 077503 [22] Gong Y, Guo J, Li J, et al. 2019 Chin. Phys. Lett. 36 076801 [23] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503 [24] Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H and Li S Y 2018 Phys. Rev. Lett. 121 207003 [25] Song Y, Liang X, Guo J, Deng J, Gao G and Chen X 2019 Phys. Rev. B 3 054804 [26] Philippi M, Gutierrez-Lezama I, Ubrig N and Morpurgo A F 2018 Appl. Phys. Lett. 113 033502 [27] Alam M H, Xu Z, Chowdhury S, Jiang Z, Taneja D, Banerjee S K, Lai K, Braga M H and Akinwande D 2020 Nat. Commun. 11 3203 [28] Arihori K, Ogawa M, Souma S, Sato-Iwanaga J and Suzuki M A 2020 IEEE International Conference on Simulation of Semiconductor Processes and Devices, September 23-October 06, 2020, Hyogo, Japan, p. 367 [29] Wang H S, Liu Q Y, Feng X M, Zhang Z, Wang K, Liu Z J and Dai J F 2020 Mater. Res. Express 7 076302 [30] Zhou Z, Wu L M, Chen J C, Ma J J, Huang Y, Shen C M, Bao L H and Gao H J 2020 Chin. Phys. B 29 118501 [31] Kühne M, Zhao D, Zschieschang U, Buck R, Müller M, Klauk H and Smet J H 2020 Adv. Mater. Interfaces 8 2001453 [32] Alam M H, Chowdhury S, Roy A, Braga M H, Banerjee S K and Akinwande D 2021 Phys. Rev. B 5 054003 [33] Zhang X Y, Hen B, Palevski A and Kapitulnik A 2021 npj Quantum Mater. 6 30 [34] Pravarthana D, Wang B M, Mustafa Z, Agarwal S, Pei K, Yang H L and Li R W 2019 Phys. Rev. Appl. 12 054065 [35] Ohno H, Munekata H, Penney T, von Molnar S and Chang L L 1992 Phys. Rev. Lett. 68 2664 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|