Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096105    DOI: 10.1088/1674-1056/ac00a2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study

Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明)
School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
Abstract  In view of the importance of enhancing ferromagnetic (FM) coupling in dilute magnetic semiconductors (DMSs), the effects of strain on the electronic structures and magnetic properties of (Ga,Fe)Sb were examined by a first-principles study. The results of the investigation indicate that Fem Ga substitution takes place in the low-spin state (LSS) with a total magnetic moment of 1μB in the strain range of -3% to 0.5%, which transitions to the high-spin state (HSS) with a total magnetic moment of 5μB as the strain changes from 0.6% to 3%. We attribute the changes in the amount and distribution of the total moment to the influence of the crystal field under different strains. The FM coupling is strongest under a strain of about 0.5%, but gradually becomes weaker with increasing compressive and tensile strains. The magnetic coupling mechanism is discussed in detail. Our results highlight the important contribution of strain to magnetic moment and FM interaction intensity, and present an interesting avenue for the future design of high Curie temperature (TC) materials in the (Ga,Fe)Sb system.
Keywords:  GaSb      Fe      ferromagnetism      strain  
Received:  02 April 2021      Revised:  07 May 2021      Accepted manuscript online:  13 May 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764032 and 11665018).
Corresponding Authors:  Xu-Ming Wang     E-mail:  wang_xm@126.com

Cite this article: 

Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明) Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study 2021 Chin. Phys. B 30 096105

[1] Ohno H 1998 Science 281 951
[2] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[3] Dietl T 2010 Nat. Mater. 9 965
[4] Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katryama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
[5] Dietl T and Ohno H 2014 Rev. Mod. Phys. 86 187
[6] You J, Gu B, Maekawa S and Su G 2020 Phys. Rev. B 102 094432
[7] Takeda T, Suzuki M, Anh L D, Thanh Tu N, Schmitt T, Yoshida S, Sakano M, Ishizaka K, Takeda Y, Fujimori S, Seki M, Tabata H, Fujimori A, Strocov V, Tanaka M and Kobayashi M 2020 Phys. Rev. B 101 155142
[8] Takeda T, Sakamoto S, Araki K, Fujisawa Y, Anh L D, Thanh Tu N, Takeda Y, Fujimori S, Fujimori A, Tanaka M and Kobayashi M 2020 Phys. Rev. B 102 245203
[9] Tu N T, Hai P N, Anh L D and Tanaka M 2015 Phys. Rev. B 92 144403
[10] Goel S, Anh L D, Tu N, Ohya S and Tanaka M 2019 Rhys. Rev. Materials 3 084417
[11] Seña N, Dussan A, Fesa F, Castaña E and González-Hernández R 2016 J. Appl. Phys. 120 051704
[12] Tu N T, Hai P N, Anh L D and Tanaka M 2014 Appl. Phys. Lett. 105 132402
[13] Tu N T, Hai P N, Anh L D and Tanaka M 2015 Phys. Rev. B 92 144403
[14] Tu N T, Hai P N, Anh L D and Tanaka M 2016 Appl. Phys. Lett. 108 192401
[15] Zhang P, Kim Y H and Wei S H 2019 Phys. Rev. Appl. 11 054058
[16] Sato K, Dederichs P H, Datayama-Yoshida H and Kudrnovský J 2004 J. Phys.: Condens. Matter 16 S5491
[17] Kondrin M V, Gizatullin V R, Popova S V, Lyapin A G, Brazhkin V V, V. Ivanov V Y, Pronin A A, Lebed Y B and Sadykov R A 2011 J. Phys.: Condens. Matter 23 446001
[18] Ganesan K, Pendyala N B, Koteswara Rao K S R, Venkataraman V and Bhat H L 2010 Semicond. Sci. Technol. 25 105003
[19] Abe E, Matsukura F, Yasuda H, Ohno Y and Ohno H 2000 Physica E 7 981
[20] Boishin G, Sullivan J and Whitman L 2005 Phys. Rev. B 71 193307
[21] Linpeng X, Karin T, Durnev M V, Glazov M M, Schott R, Wieck A D, Ludwig A and Fu K C 2021 Phys. Rev. B 103 115412
[22] Patel K, Prosandeev S, Xu B, Xu C and Bellaiche L 2021 Phys. Rev. B 103 094103
[23] Zhong H, Xiong W, Lv P, Yu J and Yuan S 2021 Phys. Rev. B 103 085124
[24] Goel S, Anh L D, Ohya S and Tanaka M 2019 Phys. Rev. B 99 014431
[25] Rawat K, Fong D D and Aidhy D S 2021 J. Appl. Phys. 129 095301
[26] Breev I, Poshakinskiy A, Yakovleva V, Nagalyuk S, Mokhov E, Hübner R, Astakhov C, Baranov P and Anisimov A 2021 Appl. Phys. Lett. 118 084003
[27] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[28] http://www.castep.org/CASTEP/ReferencingAndLogo.
[29] Pack D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[30] Orhan O and O'Regan D 2020 Phys. Rev. B 101 245137
[31] Straumanis M and Kim C 1965 J. Appl. Phys. 36 3822
[32] Sato K, Dederics P and Katayama-Yoshida H 2003 Europhys. Lett. 61 403
[33] Zener C 1951 Phys. Rev. 82 403
[34] Zener C 1951 Phys. Rev. 81 440
[35] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[36] Zhu Y, Liu T, Zhang X, Pan Y, Wei X, Ma C, Shi D and Fan J 2017 Phys. Lett. A 381 1169
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[4] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[5] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[6] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[7] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[8] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[9] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[10] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[11] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[12] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[13] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[14] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[15] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
No Suggested Reading articles found!