ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Compact 2×2 parabolic multimode interference thermo-optic switches based on fluorinated photopolymer |
Ji-Hou Wang(王继厚)1, Chang-Ming Chen(陈长鸣)1, Ke-Wei Hu(胡珂玮)1, Ru Cheng(程儒)1, Chun-Xue Wang(王春雪)1, Yun-Ji Yi(衣云骥)1, Xiao-Qiang Sun(孙小强)1, Fei Wang(王菲)1, Zhi-Yong Li(李智勇)2, Da-Ming Zhang(张大明)1 |
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Integrated Optoelectronics, Institute of Electronic Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract In this work, a dual-side parabolic structural (DSPS) multimode interference (MMI) thermo-optic (TO) waveguide switch is designed and fabricated by using novel low-loss fluorinated photopolymer materials. Comparing with the traditional dual-side linear structural (DSLS) MMI device, the effective length of the MMI coupling region proposed can be effectively reduced by 40%. The thermal stability of the waveguide material is analyzed, and the optical characteristics of the switching chip are simulated. The actual performances of the entire MMI switch are measured with an insertion loss of 7 dB, switching power of 15 mW and an extinction ratio of 28 dB. In contrast to the traditional MMI optical switch, the new type of parabolic structural MMI TO waveguide switch exhibits lower power consumption and larger extinction ratio. The compact fluorinated polymer MMI TO switches are suitable well for realizing miniaturization, high-properties, and lower cost of photonic integrated circuits.
|
Received: 16 August 2018
Revised: 18 January 2019
Accepted manuscript online:
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.79.Ta
|
(Optical computers, logic elements, interconnects, switches; neural networks)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402502), the National Natural Science Foundation of China (Grant Nos. 61575076, 61475061, 61605057, and 61675087), and the Jilin Provincial Industrial Innovation Special Fund Project, China (Grant No. 2016C019). |
Corresponding Authors:
Da-Ming Zhang
E-mail: zhangdm@jlu.edu.cn
|
Cite this article:
Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Ke-Wei Hu(胡珂玮), Ru Cheng(程儒), Chun-Xue Wang(王春雪), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Zhi-Yong Li(李智勇), Da-Ming Zhang(张大明) Compact 2×2 parabolic multimode interference thermo-optic switches based on fluorinated photopolymer 2019 Chin. Phys. B 28 044207
|
[1] |
Depizzol D B, Montalvão J B, Lima F O, Paiva M H M and Segatto M E V 2018 Expert Syst. Appl. 107 72
|
[2] |
Gou P Q, Kong M, Yang G M, Guo Z H, Zhang J, Han X F, Xiao J N and Yu J J 2018 Opt. Commun. 424 159
|
[3] |
Forni F, Shi Y, Tran N C, Boom H P A, Tangdiongga E and KoonenA M J 2018 J. Lightwave Technol. 36 3444
|
[4] |
Li X Y, Qin L, Li X Y, Zhang J S,Ren M Z, An J M, Yang X H and Xu X S 2017 Chin. Phys. Lett. 34 034211
|
[5] |
Zhang Z J, Yang J B, He X, Han Y X, Zhang J J, Huang J, Chen D B and Xu S Y 2018 Opt. Commun. 425 196
|
[6] |
Herbert D, Kumar S, Cristina L A, Mikael D, Guy L, Peter V, Jan W and Dries V T 2018 IEEE Photon. Technol. Lett. 30 1258
|
[7] |
Deng Y G, Yako M, Zhang Z Y and Wada K 2018 IEEE J. Sel. Top. Quantum Electron. 24 8300505
|
[8] |
Huang B J, Tsai C T, Lin Y H, Cheng C H, Wang H Y, Chi Y C, Chang P H, Wu C I and Lin G R 2018 ACS Photon. 5 2251
|
[9] |
Liu Y, Sun Y, Yi Y Y, Tian L, Cao Y, Chen C M, Sun X Q and Zhang D M 2017 Chin. Phys. B 26 124215
|
[10] |
Sakamaki T, Narita Y, Tsuda H, Nakajima S and Kawanishi T 2010 IEICE Electronic. Express 7 360
|
[11] |
Shin J S, Park T H, Oh M C, Chu W S, Lee C H and Shin S Y 2015 Opt. Express 23 17223
|
[12] |
Soref R A, Francesco D L and Vittorio M N P 2018 Opt. Express 26 14879
|
[13] |
Richard A S, Francesco D L and Vittorio M N P 2018 Opt. Express 26 14959
|
[14] |
Rizal C S and Niraula B 2018 Opt. Commun. 410 947
|
[15] |
Pan P, An J M and Wang H J 2015 Opt. Commun. 351 63
|
[16] |
Li H Q, Dong X Y and Li E 2013 Opt. & Laser Technol. 47 366
|
[17] |
Liang Y X, Zhao M S, Luo Y Q, Gu Y Y, Zhang Y, Wang L H, Han X Y and Wu Z L 2016 Opt. Eng. 55 117102
|
[18] |
Guo F, Lu D, Zhang R K, Wang H T, Wang W and Chen J 2016 Chin. Phys. Lett. 33 024203
|
[19] |
Ghanshyam S, Ashok S and Seema V 2013 IETE J. Res. 59 479
|
[20] |
Xiao H F, Deng L, Zhao G L, Liu Z L, Meng Y H, Guo X N, Liu G P, Liu S, Ding J F and Tian Y H 2017 J. Opt. 19 025802
|
[21] |
Zhang S C, Ji W, Yin R, Li X, Gong Z Y and Lv L Y 2018 IEEE Photon. Technol. Lett. 30 107
|
[22] |
Le D T, Truong C D and Le T T 2017 Opt. Commun. 387 148
|
[23] |
Chaudhuri R R, Amarachukwu N E, Youngsik S and Seo S W 2018 Opt. Commun. 418 1
|
[24] |
Han H L, Le H, Zhang X P, Liu A, Lin T Y, Chen Z, Lv H B, Lu M H, Liu X P and Chen Y F 2018 Opt. Express 26 25602
|
[25] |
Zhang Z D, Ma L J, Gao F, Zhang Y J, Tang J, Cao H L, Zhang B Z, Wang J C, Yan S B and Xue C Y 2017 Chin. Phys. B 26 124212
|
[26] |
Zhang Z D, Zhao Y N, Lu D, Xiong Z H and Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese)
|
[27] |
Yu Y Y, Sun X Q, Ji L T, He G B, Wang X B, Yi Y J, Chen C M, Wang F and Zhang D M 2016 Chin. Phys. B 25 054101
|
[28] |
Kim J P, Lee W Y, Kang J W, Kwon S K, Kim J J and Lee J S 2001 Macromolecules 34 7817
|
[29] |
He G B, Ji L T and Gao Y 2017 Opt. Commun. 402 422
|
[30] |
Wang J H, Chen C M, Zheng Y, Wang X B, Yi Y J, Sun X Q, Wang F and Zhang D M 2017 Chin. Phys. B 26 024212
|
[31] |
Supaat A S M, Ibrahim M H, Mohammad A B, Kassim N M and Ghazali N E 2008 Am. J. Appl. 5 1552
|
[32] |
Àlvaro R, Ana G, Antoine B, Amadeu G and Pablo S 2016 Opt. Express 24 191
|
[33] |
Wang S P and Dai D X 2018 Opt. Lett. 43 2531
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|