Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044207    DOI: 10.1088/1674-1056/28/4/044207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Compact 2×2 parabolic multimode interference thermo-optic switches based on fluorinated photopolymer

Ji-Hou Wang(王继厚)1, Chang-Ming Chen(陈长鸣)1, Ke-Wei Hu(胡珂玮)1, Ru Cheng(程儒)1, Chun-Xue Wang(王春雪)1, Yun-Ji Yi(衣云骥)1, Xiao-Qiang Sun(孙小强)1, Fei Wang(王菲)1, Zhi-Yong Li(李智勇)2, Da-Ming Zhang(张大明)1
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Integrated Optoelectronics, Institute of Electronic Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

In this work, a dual-side parabolic structural (DSPS) multimode interference (MMI) thermo-optic (TO) waveguide switch is designed and fabricated by using novel low-loss fluorinated photopolymer materials. Comparing with the traditional dual-side linear structural (DSLS) MMI device, the effective length of the MMI coupling region proposed can be effectively reduced by 40%. The thermal stability of the waveguide material is analyzed, and the optical characteristics of the switching chip are simulated. The actual performances of the entire MMI switch are measured with an insertion loss of 7 dB, switching power of 15 mW and an extinction ratio of 28 dB. In contrast to the traditional MMI optical switch, the new type of parabolic structural MMI TO waveguide switch exhibits lower power consumption and larger extinction ratio. The compact fluorinated polymer MMI TO switches are suitable well for realizing miniaturization, high-properties, and lower cost of photonic integrated circuits.

Keywords:  fluorinated photopolymer materials      parabolic structural MMI      thermo-optic waveguide switches  
Received:  16 August 2018      Revised:  18 January 2019      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402502), the National Natural Science Foundation of China (Grant Nos. 61575076, 61475061, 61605057, and 61675087), and the Jilin Provincial Industrial Innovation Special Fund Project, China (Grant No. 2016C019).

Corresponding Authors:  Da-Ming Zhang     E-mail:  zhangdm@jlu.edu.cn

Cite this article: 

Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Ke-Wei Hu(胡珂玮), Ru Cheng(程儒), Chun-Xue Wang(王春雪), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Zhi-Yong Li(李智勇), Da-Ming Zhang(张大明) Compact 2×2 parabolic multimode interference thermo-optic switches based on fluorinated photopolymer 2019 Chin. Phys. B 28 044207

[1] Depizzol D B, Montalvão J B, Lima F O, Paiva M H M and Segatto M E V 2018 Expert Syst. Appl. 107 72
[2] Gou P Q, Kong M, Yang G M, Guo Z H, Zhang J, Han X F, Xiao J N and Yu J J 2018 Opt. Commun. 424 159
[3] Forni F, Shi Y, Tran N C, Boom H P A, Tangdiongga E and KoonenA M J 2018 J. Lightwave Technol. 36 3444
[4] Li X Y, Qin L, Li X Y, Zhang J S,Ren M Z, An J M, Yang X H and Xu X S 2017 Chin. Phys. Lett. 34 034211
[5] Zhang Z J, Yang J B, He X, Han Y X, Zhang J J, Huang J, Chen D B and Xu S Y 2018 Opt. Commun. 425 196
[6] Herbert D, Kumar S, Cristina L A, Mikael D, Guy L, Peter V, Jan W and Dries V T 2018 IEEE Photon. Technol. Lett. 30 1258
[7] Deng Y G, Yako M, Zhang Z Y and Wada K 2018 IEEE J. Sel. Top. Quantum Electron. 24 8300505
[8] Huang B J, Tsai C T, Lin Y H, Cheng C H, Wang H Y, Chi Y C, Chang P H, Wu C I and Lin G R 2018 ACS Photon. 5 2251
[9] Liu Y, Sun Y, Yi Y Y, Tian L, Cao Y, Chen C M, Sun X Q and Zhang D M 2017 Chin. Phys. B 26 124215
[10] Sakamaki T, Narita Y, Tsuda H, Nakajima S and Kawanishi T 2010 IEICE Electronic. Express 7 360
[11] Shin J S, Park T H, Oh M C, Chu W S, Lee C H and Shin S Y 2015 Opt. Express 23 17223
[12] Soref R A, Francesco D L and Vittorio M N P 2018 Opt. Express 26 14879
[13] Richard A S, Francesco D L and Vittorio M N P 2018 Opt. Express 26 14959
[14] Rizal C S and Niraula B 2018 Opt. Commun. 410 947
[15] Pan P, An J M and Wang H J 2015 Opt. Commun. 351 63
[16] Li H Q, Dong X Y and Li E 2013 Opt. & Laser Technol. 47 366
[17] Liang Y X, Zhao M S, Luo Y Q, Gu Y Y, Zhang Y, Wang L H, Han X Y and Wu Z L 2016 Opt. Eng. 55 117102
[18] Guo F, Lu D, Zhang R K, Wang H T, Wang W and Chen J 2016 Chin. Phys. Lett. 33 024203
[19] Ghanshyam S, Ashok S and Seema V 2013 IETE J. Res. 59 479
[20] Xiao H F, Deng L, Zhao G L, Liu Z L, Meng Y H, Guo X N, Liu G P, Liu S, Ding J F and Tian Y H 2017 J. Opt. 19 025802
[21] Zhang S C, Ji W, Yin R, Li X, Gong Z Y and Lv L Y 2018 IEEE Photon. Technol. Lett. 30 107
[22] Le D T, Truong C D and Le T T 2017 Opt. Commun. 387 148
[23] Chaudhuri R R, Amarachukwu N E, Youngsik S and Seo S W 2018 Opt. Commun. 418 1
[24] Han H L, Le H, Zhang X P, Liu A, Lin T Y, Chen Z, Lv H B, Lu M H, Liu X P and Chen Y F 2018 Opt. Express 26 25602
[25] Zhang Z D, Ma L J, Gao F, Zhang Y J, Tang J, Cao H L, Zhang B Z, Wang J C, Yan S B and Xue C Y 2017 Chin. Phys. B 26 124212
[26] Zhang Z D, Zhao Y N, Lu D, Xiong Z H and Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese)
[27] Yu Y Y, Sun X Q, Ji L T, He G B, Wang X B, Yi Y J, Chen C M, Wang F and Zhang D M 2016 Chin. Phys. B 25 054101
[28] Kim J P, Lee W Y, Kang J W, Kwon S K, Kim J J and Lee J S 2001 Macromolecules 34 7817
[29] He G B, Ji L T and Gao Y 2017 Opt. Commun. 402 422
[30] Wang J H, Chen C M, Zheng Y, Wang X B, Yi Y J, Sun X Q, Wang F and Zhang D M 2017 Chin. Phys. B 26 024212
[31] Supaat A S M, Ibrahim M H, Mohammad A B, Kassim N M and Ghazali N E 2008 Am. J. Appl. 5 1552
[32] Àlvaro R, Ana G, Antoine B, Amadeu G and Pablo S 2016 Opt. Express 24 191
[33] Wang S P and Dai D X 2018 Opt. Lett. 43 2531
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[3] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[4] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[5] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[6] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[7] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[8] Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(11): 114208.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[11] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[14] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[15] High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler
Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆). Chin. Phys. B, 2020, 29(5): 054206.
No Suggested Reading articles found!