Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034211    DOI: 10.1088/1674-1056/ac48fe

Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity

Haowen Chen(陈颢文)1, Yunping Qi(祁云平)1,3,†, Jinghui Ding(丁京徽)1, Yujiao Yuan(苑玉娇)1, Zhenting Tian(田振廷)1, and Xiangxian Wang(王向贤)2
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
3 Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China
Abstract  A plasmonic resonator system consisting of a metal—insulator—metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory (MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.
Keywords:  surface plasmon polaritons      refractive index sensors      metal—insulator—metal (MIM) waveguide      multi-mode interference coupling theory  
Received:  04 September 2021      Revised:  27 December 2021      Accepted manuscript online:  07 January 2022
PACS:  42.79.Gn (Optical waveguides and couplers)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.40.Rw (Metal-insulator-metal structures)  
Fund: This study is supported by the National Natural Science Foundation of China (Grant No. 61865008) and Northwest Normal University Young Teachers' Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN2020- 11).
Corresponding Authors:  Yunping Qi     E-mail:

Cite this article: 

Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤) Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity 2022 Chin. Phys. B 31 034211

[1] Barnes W L, Dereux A, and Ebbesen T W 2003 Nature 424 824
[2] Hu L X, He Z Q, Hu Y and Liu S G 2021 Chin. Phys. B 30 084102
[3] Suo P F, Mao L and Xu H X 2020 Chin. Phys. Lett. 37 017801
[4] Deng Y, Cao G T, Yang H, Zhou X Q and Wu Y W 2018 Plasmon 13 345
[5] Zhou F Q, Qin F, Yi Z, Yao W T, Liu Z M, Wu X M and Wu P H 2021 Phys. Chem. Chem. Phys. 31 17041
[6] Wang G X, Lu H, Liu X M, Mao D and Duan L 2011 Opt. Express 19 3513
[7] Amini A, Aghili S, Golmohammadi S and Gasemi P 2017 Opt. Commun. 403 226
[8] Hua L, Wang G X and Liu X M 2013 Chin. Sci. Bull. 58 3607
[9] Zhang Z D, Zhao Y N, Lu D, Xiong Z H and Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese)
[10] Diksha C, Rammani A, Raj K S, Sheng H C and Ram P 2020 Optik 223 165545
[11] Wang X X, Zhu J K, Tong H, Yang X D, Wu X X, Pang Z Y, Yang H and Qi Y P 2019 Chin. Phys. B 28 044201
[12] Singh M and Datta A 2018 IEEE Photonics Technol. Lett. 30 997
[13] Yu S L, Zhao T G, Yu J G and Pan D F 2019 Sensors 19 1559
[14] Veronis G and Fan S 2005 Appl. Phys. Lett. 87 131102
[15] Chen J, Peng C, Qi S B, Zhang Q, Tang C J, Shen X Y, Da H X, Wang L H and Park G S 2019 IEEE Photonic. Tech. L. 31 113
[16] Xiang L and Huang L J 2020 Opt. Commun. 475 126298
[17] Wang C L, Wang Y Q, Hu H, Liu D J, Gao D L and Gao L 2019 Opt. Express 27 35925
[18] Lu H, Liu X M, Wang L R, Gong Y K and Mao D 2011 Opt. Express 19 2910
[19] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[20] Chen J, Nie H, Tang C J, Cui Y H, Yan B, Zhang Z Y, Kong Y R, Xu Z J and Cai P G 2019 Appl. Phys. Express 12 052015
[21] Jiang X P, Chen D B, Zhang Z J, Huang J, Wen K, He J and Yang J B 2020 Opt. Express 28 34079
[22] Chen J, Qi S B, Hong X B, Gu P, Wei R Q, Tang C J, Huang Y L and Zhao C Y 2019 Results Phys. 15 102791
[23] Yan S B, Luo L, Xue C Y and Zhang Z D 2015 Sensors 15 29183
[24] Li S L, Wang Y L, Jiao R Z, Wang L L, Duan G Y and Yu L 2017 Opt. Express 25 3525
[25] Tang Y, Zhang Z D, Wang R B, Hai Z Y, Xue C Y, Zhang W D and Yan S B 2017 Sensors 17 784
[26] Li D Y and Li E P 2013 Opt. Lett. 38 3384
[27] Zhang Z J, Yang J B, He X, Zhang J J, Huang J, Chen D B and Han Y X 2018 Sensors 18 116
[28] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[29] Qi Y P, Zhang X W, Zhou P Y, Hu B B and Wang X X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
[30] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[31] Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G and He H F 2014 Opt. Commun. 323 44
[32] Qi Y P, Wang L Y, Zhang Y, Zhang T, Zhang B H, Deng X Y and Wang X X 2020 Chin. Phys. B 29 067303
[33] Deng Y, Cao G T, Wu Y W, Zhou X Q and Liao W H 2015 Plasmonics 10 1537
[34] Qi Y P, Zhang T, Guo J, Zhang B H and Wang X X 2020 Acta Phys. Sin. 69 167301 (in Chinese)
[35] Chen J, Nie H, Zha T Q, Mao P, Tang C J, Shen X Y and Park G S 2018 J. Lightwave Technol. 36 2791
[36] Qi Y P, Ding J H, Zhang T, Liu W M, Wang L Y and Wang X X 2021 Europhys Lett. 134 67001
[37] Chen Y H, Chen L, Wen K H, Hu Y H and Lin W T 2019 Photonic. Nanostruct. 36 100714
[38] Chen Y, Zhou X D, Zhang M, Xiao C Y, Ding Z X and Zhou J 2020 Phys. Lett. A 384 126877
[39] Chen Z and Yu L 2014 IEEE Photonics J. 6 4802208
[40] Ren X B, Ren K and Ming C G 2018 Sensors 18 1376
[41] Guo Z C, Wen K H, Hu Q Y, Lai W H, Lin J Y and Fang Y H 2018 Sensors 18 1348
[42] Li C, Li S L, Wang Y L, Jiao R Z, Wang L L and Yu L 2017 IEEE Photonics. J. 9 4801509
[43] Jan B, Andreas T, Arpad J, Ulrich H and Carsten S 2010 Plasmonics 5 161
[44] Ren M X, Pan C P, Li Q Q and Cai W 2013 Opt. Lett. 38 3133
[1] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[2] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[3] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[8] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[9] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[12] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[13] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[14] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[15] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
No Suggested Reading articles found!