Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054206    DOI: 10.1088/1674-1056/ab7b52
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler

Zi-Qing Lu(陆子晴)1,2, Qin Han(韩勤)1,2,3, Han Ye(叶焓)1,2, Shuai Wang(王帅)1,2, Feng Xiao(肖峰)1,2, Fan Xiao(肖帆)1,2
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  An InP optical 90° hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated. The working principle of the 90° hybrid is systematically introduced. Three-dimensional beam ropagation method (3D BPM) is used to optimize the structure parameters of the 90° hybrid. The designed compact structure is demonatrated to have a low excess loss less than -0.15 dB, a high common mode rejection ratio better than 40 dB, and a low relative phase deviation less than ±2.5°. The designed hybrid is manufactured on a sandwitched structure deposited on an InP substrate. The measured results show that the common mode rejection ratios are larger than 20 dB in a range from 1520 nm to 1580 nm. The phase deviations are less than ±5° in a range from 1545 nm to 1560 nm and less than ±7° across the C band. The designed 90° optical hybrid is suitable well for realizing miniaturization, high-properties, and high bandwidth of coherent receiver.
Keywords:  90° hybrid      ×4 MMI coupler      deep ridge      high common mode rejection ratio  
Received:  17 December 2019      Revised:  26 December 2019      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.25.Hz (Interference)  
  42.79.Gn (Optical waveguides and couplers)  
  42.82.Fv (Hybrid systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402404), the Beijing Natural Science Foundation, China (Grant No. 4194093), and the National Natural Science Foundation of China (Grant Nos. 61635010, 61674136, and 61435002).
Corresponding Authors:  Qin Han     E-mail:  hanqin@semi.ac.cn

Cite this article: 

Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆) High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler 2020 Chin. Phys. B 29 054206

[1] Yamamoto Y and Kimura T 1981 J. Quantum Electron 17 919
[2] Kimura T 1987 J. Lightwave Technol. 5 414
[3] Ip E, Lau A P T and Barros D J F 2008 Opt. Express 16 753
[4] Gregory R, Andrew A and Peter J W 2014 J. Lightwave Technol. 32 824
[5] Sun H 2008 Opt. Express 16 873
[6] Pinto A N, Amado S B and Martins C S 2015 17th International Conference on Transparent Optical Networks (ICTON), July 5-9, Budapest, Hungary
[7] Nakazawa M 2010 Optical and Fiber Communications Reports, Vol. 6 (Switzerland AG: Springer Nature) pp. 51-80
[8] Yamazaki E, Yamanaka S and Kisaka Y 2011 Opt. Express 19 13179
[9] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202
[10] Su Y L, Feng H, Hu H, Wang W, Duan T, Wang Y S, Si J H, Xie X P, Yang H N and Huang X N 2019 Chin. Phys. B 28 024216
[11] Shi K, Smyth F and Reid D 2011 Opt. Commun. 284 1616
[12] Yi X, Yu R and Kurumida J 2010 J. Lightwave Technol. 28 587
[13] Meloni G, Paolucci F and Sambo N 2011 37th European Conference & Exhibition on Optical Communication, Spetempber 18-22, 2011, Geneva, Switzerland
[14] Chan C K, Jia W and Liu Z 2011 Asia Communications and Photonics Conference and Exhibition (ACP), November 13-16, 2011, Shanghai, China
[15] Patnaik B and Sahu P K 2013 Int. J. Sig. Imag. Syst. Eng. 6 3
[16] Seimetz M and Weinert C M 2006 J. Lightwave Technol. 24 1317
[17] Patrick R, Stefan S and Angela S 2012 38th European Conference & Exhibition on Optical Communications, September 16-20, 2012, Amsterdam, Netherlands
[18] Yang W, Yin M, Li Y P, Wang X J and Wang Z Y 2013 Opt. Express 21 28423
[19] Shibata J, Nakao I and Sasai Y 1984 Appl. Phys. Lett. 45 191
[20] Wang Z, Zhai Y, Lu Y, Xu J, Sun X B and Wang J 2018 Opt. Commun. 426 99
[21] Paul M, John M, Graeme B and Nicholas P 2017 Optical Fiber Communications Coference and Exhibition, March 19-23, 2017, Los Angeles, CA, USA
[22] Xu L H, Wang Y, Patel D, Morsy-Osman M, Li R, Hui M, Parvizi M, Ben-Hamida N and V plant D 2018 Optical Fiber Communications Coference and Exposition, March 11-15, 2018, Sab Duegi, CA, USA
[23] Doerr C R, Gill D M, Gnauck A H, Buhl L L, Winzer P J, Cappuzzo M A, Wong-Foy A, Chen E Y and Gomez L T 2006 J. Lightwave Technol. 24 171
[24] Patrick R, Stefan S, Angela S, Klemens J, Jens S, Dirk T, Patrick D and Mads L N 2012 Opt. Express 20 B250
[25] Lars Z, Karsten V, Georg W, Klaus P and Carl M W 2009 Photon. Technol. Lett. 21 143
[26] Deri R J, Pennings E C M, Scherer A, Gozdz A S, Caneau C, Andreadakis N C, Shah V, Curtis L, Hawkins R J, Soole J B D and Song J I 1992 Photon. Technol. Lett. 4 1238
[27] Masaru T, Yoshihiro T and Shoichi O 2013 39th European Conference and Exhibition on Optical Communication (ECOC 2013), September 22-26, 2013, London, UK
[28] Islam M S, Murthy S, Itoh T and Wu M C 2001 IEEE Trans. Microw. Theory Tech. 49 1914
[29] Saif Islam M, Thomas J, Itoh T, Wu M C, Nespola A, Sivco D L and Cho A Y 2002 J. Lightwave Technol. 20 285
[30] Lv Q Q, Pan P, Ye H, Yin D D, Wang Y B, Yang X H and Han Q 2016 Chin. Phys. B 25 038505
[31] Zhang Y, Zuo Y H, Guo J C, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 2223
[32] Soldano L B and Pennings E C M 1995 J. Lightwave Technol. 13 615
[33] Bachmann M, Besse P A and Melchior H 1994 Appl. Opt. 33 3905
[34] Guo F, Lu D, Zhang R K, Wang H T, Wang W and Ji C 2016 Chin. Phys. Lett. 33 024203
[35] Yu T, Li H, Cao Z, Wang Y, Shen Q and He Y 2008 Opt. Lett. 33 1001
[1] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[2] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[3] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[4] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[5] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[6] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[7] Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(5): 054205.
[8] Acquisition performance analysis for intersatellite optical communications with vibration influence
Jing Ma(马晶), Gaoyuan Lu(陆高原), Siyuan Yu(于思源), Liying Tan(谭立英), Yulong Fu(付玉龙), Fajun Li(黎发军). Chin. Phys. B, 2020, 29(1): 014205.
[9] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[10] Multi-functional optical fiber sensor system based ona dense wavelength division multiplexer
Yue-Xin Yin(尹悦鑫), Zhifa Wu(吴志发), Siwen Sun(孙思文), Liang Tian(田亮), Xibin Wang(王希斌), Yuanda Wu(吴远大), Daming Zhang(张大明). Chin. Phys. B, 2019, 28(7): 074202.
[11] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[12] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[13] Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进). Chin. Phys. B, 2018, 27(9): 094217.
[14] Micro-light-emitting-diode array with dual functions of visible light communication and illumination
Yong Huang(黄涌), Zhi-You Guo(郭志友), Hui-Qing Sun(孙慧卿), Hong-Yong Huang(黄鸿勇). Chin. Phys. B, 2017, 26(10): 108504.
[15] Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating
Kai-Li Li(李凯丽), Jun-Ming An(安俊明), Jia-Shun Zhang(张家顺), Yue Wang(王玥), Liang-Liang Wang(王亮亮), Jian-Guang Li(李建光), Yuan-Da Wu(吴远大), Xiao-Jie Yin(尹小杰), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2016, 25(12): 124209.
No Suggested Reading articles found!