Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084203    DOI: 10.1088/1674-1056/abe118

Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium

Yingcong Zhang(张颖聪)1, Wenjuan Cai(蔡文娟)1, Xianping Wang(王贤平)1,2,†, Wen Yuan(袁文)1, Cheng Yin(殷澄)3, Jun Li(李俊)4, Haimei Luo(罗海梅)1, and Minghuang Sang(桑明煌)1
1 Jiangxi Key Laboratory of Photoelectronics and Telecommunication, Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
4 Department of Physics, Jiangxi Normal University Science and Technology College, Nanchang 330022, China
Abstract  Owing to the enormously enhanced oscillating wave, a minute variation of the incident light intensity will give rise to a change in the dielectric constant of the Kerr nonlinear medium and lead to a bistable reflection with an ultra-low threshold intensity, which is closely related to the angle of incidence and the thickness of the Kerr nonlinear medium. The criterion for the existence of optical bistability is derived. Our bistability scheme is simple and not limited to the TM-polarization.
Keywords:  optical bistability      waveguide      nonlinear optics      Kerr nonlinear material  
Received:  06 January 2021      Revised:  21 January 2021      Accepted manuscript online:  29 January 2021
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Fund: Projected supported by the Open Fund by State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No. 2017GZKF18), the National Natural Science Foundation of China (Grant Nos. 12064017, 61765008, 11764020, 11864017, 11804133, and 51567011), the Jiangxi Provincial Natural Science Foundation (Grant No. 20181BAB206034), the Fundamental Research Funds for the Central Universities of China (Grant No. 2017B14914), the Postdoctoral Science Foundation of China (Grant No. 2016M601586), the Science and Technology Project of Changzhou (Grant No. CJ20180048), and Scientific Research Fund of Jiangxi Provincial Education Department (Grant Nos. GJJ150313, GJJ160273, and GJJ170184).
Corresponding Authors:  Xianping Wang     E-mail:

Cite this article: 

Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌) Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium 2021 Chin. Phys. B 30 084203

[1] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622
[2] Guo Q, Zhao X, Zhao H and Chigrinov V 2015 Opt. Lett. 40 2413
[3] Li Y N, Chen Y Y, Wan R G and Yan H W 2019 Phys. Lett. A 383 2248
[4] Xia X, Zhang X, Xu J and Yang Y 2018 Optik 167 95
[5] Witt A, Wegener M, Klingshirn C, Gnass D and Jäger D 1988 Appl. Phys. Lett. 52 342
[6] Umegaki S, Inoue H and Yoshino T 1981 Appl. Phys. Lett. 38 752
[7] Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y and Yang G 2008 Opt. Lett. 33 869
[8] Bravo-Abad J, Rodriguez A, Bermel P, Johnson S, Joannopoulos J and Soljačić M 2007 Opt. Express 15 16161
[9] Wang F Y, Li G X, Tam H L, Cheah K W and Zhu S N 2008 Appl. Phys. Lett. 92 211109
[10] Azadpour F and Bahari A 2019 Opt. Commun. 437 297
[11] Ikeda K and Fainman Y 2006 Opt. Lett. 31 3486
[12] Zang Z G 2013 Appl. Opt. 52 5701
[13] Zang Z G 2012 Opt. Commun. 285 521
[14] Zang Z G and Zhang Y J 2012 J. Mod. Optic. 59 161
[15] Tang S, Zhu B, Xiao S, Shen J and Zhou L 2014 Opt. Lett. 39 3212
[16] Wang G, Lu H, Liu X, Gong Y and Wang L 2011 Appl. Opt. 50 5287
[17] Wysin G, Simon H and Deck R 1981 Opt. Lett. 6 30
[18] Lu H, Cao Z, Li H and Shen Q 2004 Appl. Phys. Lett. 85 4579
[19] Yu T, Li H, Cao Z, Wang Y, Shen Q and He Y 2008 Opt. Lett. 33 1001
[20] Wang X, Yin C, Li H, Sang M, Yuan W and Cao Z 2013 Opt. Lett. 38 4085
[21] Xu T, Huang L, Yin C, Jin Y, Fang J and Huang M 2014 Appl. Phys. Lett. 105 163703
[22] Yin C, Lu Y, Xu T, Wei D Z, Jin Y L, Fang J H, Wang C N and Huang M Z 2016 J. Raman Spectrosc. 47 560
[23] Dai H, Cao Z, Wang Y, Li H, Sang M, Yuan W, Chen F and Chen X 2016 Sci. Rep. 6 32018
[24] Dai H, Yin C, Xiao Z, Cao Z and Chen X 2019 Phys. Rev. Appl. 11 064055
[25] Giorgetti E, Margheri G, Gelli F, Sottini S, Comoretto D, Cravino A, Cuniberti C, Dell'Erba C, Moggio I and Dellepiane G 2001 Synth. Met. 116 129
[26] Rollke K and Sohler W 1977 IEEE J. Quantum Electron. 13 141
[27] Liu X, Cao Z, Zhu P, Shen Q and Liu X 2006 Phys. Rev. E 73 056617
[28] Zhou H, Chen X, Hou P and Li C F 2008 Opt. Lett. 33 1249
[29] Yuan W, Yin C, Xiao P. Wang X, Sun J, Huang S, Chen X and Cao Z 2011 Microfluid. Nanofluid. 11 781
[30] Wang Y, Cao Z Q, Li H G, Hao J, Yu T Y and Shen Q S 2008 Appl. Phys. Lett. 93 091103
[31] Chen J, Wang P, Wang X, Lu Y, Zheng R, Ming H and Zhan Q 2009 Appl. Phys. Lett. 94 081117
[32] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622
[33] Guo J, Jiang L, Jia Y, Dai X, Xiang Y and Fan D 2017 Opt. Express 25 5972
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[12] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[13] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
No Suggested Reading articles found!