Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044208    DOI: 10.1088/1674-1056/abe3f3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sensitivity enhancement of micro-optical gyro with photonic crystal

Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚)
1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  We propose a core rotation-sensing element for improving the sensitivity of the micro-optical gyroscope using the large nonreciprocal effect with a photonic crystal. The sharp transmission peak of electromagnetically induced transparency in photonic crystal generated from a periodic distribution of cold atoms is sensitive to the rotation. Our numerical results show that the sensitivity of relative rotation is about 50 times higher and the sensitivity of absolute rotation is more than two orders higher than that of the traditional resonant optical gyroscope. Also, the sensitivity of the gyroscope can be manipulated by varying the atomic density, modulation frequency, probe pulse width, and photonic crystal length, etc.
Keywords:  optical nonreciprocal effect      photonic crystal      micro-optical gyro      high sensitivity  
Received:  04 January 2021      Revised:  23 January 2021      Accepted manuscript online:  08 February 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.81.Pa (Sensors, gyros)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804066 and 61773133), Heilongjiang Provincial Natural Science Foundation of China (Grant No. LH2019A005), China Postdoctoral Science Foundation (Grant No. 2018M630337), and Heilongjiang Provincial Postdoctoral Science Foundation (Grant No. LBHZ18062).
Corresponding Authors:  Corresponding author. E-mail: xuebinghrbeu@163.com   

Cite this article: 

Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚) Sensitivity enhancement of micro-optical gyro with photonic crystal 2021 Chin. Phys. B 30 044208

1 Lai Y H, Suh M G, Lu Y K, Shen B Q, Yang Q F, Wang H M, Li J, Lee S H, Yang K Y and Vahala K 2020 Nat. Photon. 4 1
2 Ma H L, Zhang J, Wang L, Lu Y, Ying D and Jin Z H 2015 Opt. Lett. 40 5862
3 Li J, Suh M G and Vahala K 2015 Optica 4 346
4 Lai Y H, Lu Y K, Suh M G, Yuan Z Q and Vahala K 2019 Nature 576 65
5 Kondratiev N M, Lobanov V E, Cherenkov A V, Voloshin A S, Pavlov N G, Koptyaev S and Gorodetsky M L 2017 Opt. Express 25 28167
6 Ren J, Hodaei H, Harari G, Hassan A U, Chow W, Soltani M, Christodoulides D and Khajavikhan M 2017 Opt. Lett. 42 1556
7 Hokmabadi M P, Schumer Alexander, Christodoulides D N and Khajavikhan M 2019 Nature 576 70
8 Biberman A, Shaw M J, Timurdogan E, Wright J B and Wattset M R 2012 Opt. Lett. 37 4236
9 Khial P P, White A D and Hajimiri A 2018 Nat. Photon. 12 671
10 Ma H L, Zhang J J, Wang L L and Jin Z H 2015 Opt. Express 23 15088
11 Wang J J, Feng L S, Tang Y C and Zhi Y Z 2015 Opt. Lett. 40 155
12 Wang J J, Ma H L, Li H Z and Jin Z H 2017 Opt. Lett. 42 3658
13 Matsko A B, Liang W, Savchenkov A A, Ilchenko V S and Maleki L 2017 Phys. Lett. A 382 2289
14 Shahriar M S, Pati G S, Tripathi R, Gopal V, Messall M and Salit K 2007 Phys. Rev. A 75 053807
15 Zhang E K, Yang L, Xue B, Gao Z X and Zhang Y G 2018 Opt. Eng. 57 085106
16 Xie C F, Tang J, Cui D F, Wu D J, Zhang C F, Li C M, Zhen Y Q, Xue C Y and Liu J 2016 Opt. Lett. 41 4783
17 Liang W, Ilchenko V S, Savchenkov A A, Dale E, Eliyahu D, Matsko A B and Maleki L 2017 Optica 4 114
18 Li H Z, Lin Y, Liu L, Ma H L and Jin Z H 2020 Opt. Express 28 18103
19 Wang J J, Feng L S, Wang Q W, Jiao H C and Wang X 2016 Opt. Lett. 41 1586
20 Harris S E 1997 Phys. Today 50 36
21 Lukin M D, Fleischhauer M, Scully M O and Velichansky V L 1998 Opt. Lett. 23 295
22 Li J H, Qu Y, Yu R and Wu Y 2018 Phys. Rev. A 97 023826
23 Zhang Y, Liu Y M, Tian X D, Zheng T Y and Wu J H 2015 Phys. Rev. A 91 013826
24 Artoni M, La Rocca G C and Bassani F 2005 Phys. Rev. E 72 046604
25 Petrosyan D 2007 Phys. Rev. A 76 053823
26 Hua S Y, Wen J M, Jiang X S, Hua Q, Jiang L and Xiao M 2016 Nat. Commun. 7 13657
27 He B, Yang L, Jiang X S and Xiao M 2018 Phys. Rev. Lett. 120 203904
28 Zhang H L, Huang R, Zhang S D, Li Y, Qiu C W, Nori F and Jing H 2020 Nano Lett. 20 7594
29 Kang M S, Butsch A and Russell P St J 2011 Nat. Photon. 5 549
30 Zaman T R, Guo X and Ram R J 2007 Appl. Phys. Lett. 90 023514
31 Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N and Carmon T 2018 Nature 558 569
32 Jing H, Lü H, özdemir S K, Carmon T and Nori F 2018 Optica 5 1424
33 Lü H, Jiang Y J, Wang Y Z and Jing H 2017 Photonics Res. 5 367
34 Jiang Y, Maayani S, Carmon T, Nori F and Jing H 2018 Phys. Rev. Appl. 10 064037
35 Serebryannikov A E 2009 Phys. Rev. B 80 155117
36 Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
37 Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L and Wu J H 2015 Phys. Rev. A 92 053859
38 Horsley S A R, Wu J H, Artoni M and La Rocca G C 2013 Phys. Rev. Lett. 110 223602
39 Liang W, Savchenkov A, Ilchenko V, Griffith R, Cuir E D, Kim S, Matsko A and Maleki L 2017 Opt. Lett. 42 4736
40 Geng J T, Yang L, Zhao S H and Zhang Y G 2020 Opt. Express 28 32907
41 Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
42 Fei Y, He Y M, Wang X D, Yang F H and Li Z F 2018 Chin. Phys. B 27 084213
43 Schilke A, Zimmermann C, Courteille P W and Guerin W 2011 Phys. Rev. Lett. 106 223903
44 Kuhr S, Alt W, Schrader D, Müller M, Gomer V and Meschede D 2001 Science 293 278
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!