ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Femtosecond enhancement cavity with kilowatt average power |
Jin Zhang(张津)1,2, Lin-Qiang Hua(华林强)1, Shao-Gang Yu(余少刚)1,2, Zhong Chen(陈忠)1,2, Xiao-Jun Liu(柳晓军)1 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Femtosecond enhancement cavity (fsEC) has been proved to be a powerful tool in a diverse range of applications. Here, we report the recent progresses in building an fsEC on kilowatt level average power, with the aim of realization of intracavity high harmonic generation (HHG) and extension of the wavelength of femtosecond optical frequency comb from infrared (IR) to extreme ultraviolet (XUV). Upon mode-matching optimization and cavity length locking, an intracavity average power of 6.08 kW is reached and the corresponding buildup is 225. After introducing noble gas of Xe into the focus region, clear sign of plasma has been observed. The generated HHG is also coupled out by a sapphire plate placed at Brewster's angle for the fundamental laser. Our work paves the way for the realization of an XUV comb.
|
Received: 02 January 2019
Revised: 28 January 2019
Accepted manuscript online:
|
PACS:
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674356 and 11527807) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21010400). |
Corresponding Authors:
Lin-Qiang Hua, Xiao-Jun Liu
E-mail: hualq@wipm.ac.cn;xjliu@wipm.ac.cn
|
Cite this article:
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军) Femtosecond enhancement cavity with kilowatt average power 2019 Chin. Phys. B 28 044206
|
[1] |
Jones R J, Moll K D, Thorpe M J and Ye J 2005 Phys. Rev. Lett. 94 193201
|
[2] |
Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F and Hansch T W 2005 Nature 436 234
|
[3] |
Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2012 Nature 482 68
|
[4] |
Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbuldt P, Rauschenberger J, Limpert J, Udem T, Tunnermann A, Hansch T W, Apolonski A, Krausz F and Fill E 2013 Nat. Photon. 7 608
|
[5] |
Benko C, Allison T K, Cingoz A, Hua L, Labaye F, Yost D C and Ye J 2014 Nat. Photon. 8 530
|
[6] |
Ozawa A and Kobayashi Y 2013 Phys. Rev. A 87 022507
|
[7] |
Porat G, Heyl C M, Schoun S B, Benko C, Dorre N, Corwin K L and Ye J 2018 Nat. Photon. 12 387
|
[8] |
Hogner M, Tosa V and Pupeza I 2017 New J. Phys. 19 033040
|
[9] |
Lilienfein N, Hofer C, Holzberger S, Matzer C, Zimmermann P, Trubetskov M, Pervak V and Pupeza I 2017 Opt. Lett. 42 271
|
[10] |
Winkler G, Fellinger J, Seres J, Seres E and Schumm T 2016 Opt. Express 24 5253
|
[11] |
Ozawa A, Zhao Z, Kuwata-Gonokami M and Kobayashi Y, et al. 2015 Opt. Express 23 15107
|
[12] |
Carstens H, Lilienfein N, Holzberger S, Jocher C, Eidam T, Limpert J, Tunnermann A, Weitenberg J, Yost D C, Alghamdi A, Alahmed Z, Azzeer A, Apolonski A, Fill E, Krausz F and Pupeza I 2014 Opt. Lett. 39 2595
|
[13] |
Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Schibli T R and Ye J 2008 Eur. Phys. J. D 48 43
|
[14] |
Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H and Eyler E E 1998 Phys. Rev. Lett. 80 3475
|
[15] |
Haas M, Jentschura U D, Keitel C H, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hansch T W, Scully M O and Agarwal G S 2006 Phys. Rev. A 73 052501
|
[16] |
Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knunz S, Kolachevsky N, Schussler H A, Hansch T W and Udem T 2009 Phys. Rev. A 79 052505
|
[17] |
Prior M H and Shugart H A 1971 Phys. Rev. Lett. 27 902
|
[18] |
Semczuk M 2009 “An ion trap for laser spectroscopy on lithium ions”, MS Thesis (Warsaw: University of Warsaw)
|
[19] |
Ferray M, Lhuillier A, Li X F, Lompre L A, Mainfray G and Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31
|
[20] |
Cundiff S T 2002 J. Phys. D: Appl. Phys. 35 R43
|
[21] |
Black E D 2001 Am. J. Phys. 69 79
|
[22] |
Zhang J W, Han H N, Hou L, Zhang L, Yu Z J, Li D H and Wei Z Y 2016 Chin. Phys. B 25 014205
|
[23] |
Moll K D, Jones R J and Ye J 2005 Opt. Express 13 1672
|
[24] |
Han H N, Zhang J W, Zhang Q, Zhang L and Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)
|
[25] |
Ozawa A, Rauschenberger J, Gohle C, Herrmann M, Walker D R, Pervak V, Fernandez A, Graf R, Apolonski A, Holzwarth R, Krausz F, Hansch T W and Udem T 2008 Phys. Rev. Lett. 100 253901
|
[26] |
Jin C, Zhou X X and Zhao S F 2010 Chin. Phys. Lett. 27 033301
|
[27] |
Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett. 34 014206
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|