Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017107    DOI: 10.1088/1674-1056/28/1/017107
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+

Xi-Long Dou(豆喜龙)1, Xiao-Yu Kuang(邝小渝)1, Xin-Xin Xia(夏欣欣)1, Meng Ju(巨濛)2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  

The exploration of the appropriate red phosphor with good luminescence properties is an important issue in the development of current white light-emitting diode (WLED) devices. Transition metal Mn-doped compounds are fascinating luminescent materials. Herein, we performed a systematic theoretical study of the microstructure and optical properties of K2TiF6:Mn4+ using the CALYPSO structure search method in combination with first-principles calculations. We uncovered a novel structure of K2TiF6:Mn4+ with space group P-3m1 symmetry, where the impurity Mn4+ ions are accurately located at the center of the MnF6 octahedra. Based on our developed complete energy matrix diagonalization (CEMD) method, we calculated transition lines for 2Eg4A2, 4A24T2, and 4A24T2 at 642 nm, 471 nm, and 352 nm, respectively, which are in good agreement with the available experimental data. More remarkably, we also found another transition (4A22T2) that lies at 380 nm, which should be a promising candidate for laser action.

Keywords:  crystal structures      first-principles calculations      K2TiF6  
Received:  10 October 2018      Revised:  20 November 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.50.-f (Structure of bulk crystals)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574220), Fundamental Research Funds for the Central Universities, China (Grant No. SWU118055), and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), China.

Corresponding Authors:  Xiao-Yu Kuang, Meng Ju     E-mail:  scu_kuang@163.com;mengju@swu.edu.cn

Cite this article: 

Xi-Long Dou(豆喜龙), Xiao-Yu Kuang(邝小渝), Xin-Xin Xia(夏欣欣), Meng Ju(巨濛) Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+ 2019 Chin. Phys. B 28 017107

[1] Ki W and Li J 2008 J. Am. Chem. Soc. 130 8114
[2] Schubert E F and Kim J K 2005 Science 308 1274
[3] Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180
[4] Bai X, Caputo G, Hao Z, Freitas V T, Zhang J, Longo R L, Malta O L, Ferreira R A S and Pinna N 2014 Nat. Commun. 5 5702
[5] Wang L, Zhang H, Wang X J, Dierre B, Suehiro T, Takeda T, Hirosaki N and Xie R J 2015 Phys. Chem. Chem. Phys. 17 15797
[6] Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A K, Wiechert D, Scheu C, Schmidt P J and Schnick W 2014 Nat. Mater. 13 891
[7] Huang X 2014 Nat. Photon. 8 748
[8] Oh J H, Eo Y J, Yoon H C, Huh Y D and Do Y R 2016 J. Mater. Chem. C. 4 8326
[9] Schlotter P, Baur J, Hielscher C, Kunzer M, Obloh H, Schmidt R and Schneider J 1999 Mater. Sci. Eng. B 59 390
[10] Daicho H, Iwasaki T, Enomoto K, Sasaki Y, Maeno Y, Shinomiya Y, Aoyagi S, Nishibori E, Sakata M, Sawa H and Matsuishi S 2012 Nat. Commun. 3 1132
[11] Xie R J and Hirosaki N 2007 Sci. Technol. Adv. Mat. 8 588
[12] Jang H S, Im W B, Lee D C, Jeon D Y and Kim S S 2007 J. Lumin. 126 371
[13] Zhang R, Lin H, Yu Y, Chen D, Xu J and Wang Y 2014 Laser Photon. Rev. 8 158
[14] Sakuma K, Omichi K, Kimura N, Ohashi M, Tanaka D, Hirosaki N, Yamamoyo Y, Xie R J and Suehiro T 2004 Opt. Lett. 29 2001
[15] Piquette A P, Hannah M E and Mishra K C 2012 ECS Trans. 41 1
[16] Piao X, Machida K I, Horikawa T, Hanzawa H, Shimomura Y and Kijima N 2007 Chem. Mater. 19 4592
[17] Wang T, Gao Y, Chen Z, Huang Q, Wu L, Huang Y, Liao S and Zhang H 2017 J. Lumin. 188 307
[18] Wang Z, Zhou Y, Yang Z, Liu Y, Yang H, Tan H, Zhang Q and Zhou Q 2015 Opt. Mater. 49 235
[19] Lin C C, Meijerink A and Liu R S 2016 J. Phys. Chem. Lett. 7 495
[20] Xu Y K and Adachi S 2011 J. Electrochem. Soc. 158 J58-J65
[21] Lv L, Chen Z, Liu G, Huang S and Pan Y 2015 J. Mater. Chem. C 3 1935
[22] Wang T, Gao Y, Chen Z, Huang Q, Song B, Huang Y, liao S and Zhang H 2017 J. Mater. Sci-Mater. El. 28 11878
[23] Tang F, Su Z, Ye H, Wang M, Lan X, Phillips D L, Cao Y and Xu S 2016 J. Mater. Chem. C 4 9561
[24] Han T, Lang T, Wang J, Tu M and Peng L 2015 RSC Adv. 5 100054
[25] Fang M H, Wu W L, Jin Y, Lesniewski T, Mahlik S, Grinberg M, Brik M G, Srivastava A M, Chiang C Y, Zhou W and Jeong D 2018 Angew. Chem. Int. Edit. 57 1797
[26] Lian H, Huang Q, Chen Y, Li K, Liang S, Shang M, Liu M and Lin J 2017 Inorg. Chem. 56 11900
[27] Nguyen H D and Liu R S 2016 J. Mater. Chem. C 4 10759
[28] Wei L L, Lin C C, Fang M H, Brik M G, Hu S F, Jiao H and Liu R S 2015 J. Mater. Chem. C 3 1655
[29] Bel O 2000 Acta Crystallogr. C 56 521
[30] Liao J, Nie L Zhong L Gu Q and Wang Q 2016 Luminescence 31 802
[31] Liao C, Cao R, Ma Z, Li Y and Dong G 2013 J. Am. Ceram. Soc. 96 3552
[32] Zhu H, Lin C C, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y R, Liu S and Chen X 2014 Nat. Commun. 5 4312
[33] Bicanic K T, Li X, Sabatini R P, Hossain N, Wang C F, Fan F, Liang H, Hoogl and S 2016 ACS Photon. 3 2243
[34] Zhou Y Y, Song E H, Deng T T and Zhang Q Y 2017 ACS Appl. Mater. Inter. 10 880
[35] Sun J P, Zhang D and chang K 2017 Chin. Phys. Lett. 34 027102
[36] Dai X, Le C C, Wu X X, Qin S S, Lin Z P and Hu J P 2016 Chin. Phys. Lett. 33 127301
[37] Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102
[38] Murtaza G, Khan A A, Yaseen M, Laref A, Ullah N and ur Rahman I 2018 Chin. Phys. B 27 047102
[39] Benlamari S, Bendjeddou H, Boulechfar R, Korba S A, Meradji H, Ahmed R and Omran S B 2018 Chin. Phys. B 27 037104
[40] Yue Y, Song Y and Zuo X 2018 Chin. Phys. B 27 037102
[41] Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
[42] Stashans A and Rivera K 2016 Chin. Phys. Lett. 33 097102
[43] Mahmood Q, Yaseen M, Bhamu K C, Mahmood A, Javed Y and Ramay S M 2018 Chin. Phys. B 27 037103
[44] Ahmed N, Mukhtar S, Gao W and Ilyas S Z 2018 Chin. Phys. B 27 033101
[45] Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644
[46] Lu S, Wang Y, Liu H, Miao M S and Ma Y 2014 Nat. Commun. 5 3666
[47] Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[48] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[49] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[50] Lu C, Li Q, Ma Y and Chen C 2017 Phys. Rew. Lett. 119 115503
[51] Lu C and Chen C 2018 J. Phys. Chem. Lett. 9 2181
[52] Cheng L, Shuai Z, Yu Z, Da-Wei Z Z, Chao-Zheng H and Zhi-Wen L 2014 J. Alloy. Compd. 597 119
[53] Lu C, Amsler M and Chen C 2018 Phys. Rev. B 98 054102
[54] Jin Y, Fang M H, Grinberg M, Mahlik S, Lesniewski T, Brik M G, Lou G Y, Lin J G and Liu R S 2016 Acs. Appl. Mater. Inter. 8 11194
[55] Brik M G 2010 Solid State Commun. 150 1529
[56] Nava-Avendaño J, Dompablo M E, Frontera C, Ayllón J A and Palacín M R 2015 Solid State Ionics 278 106
[57] Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A and Ceder G A 2011 Comput. Mater. Sci. 50 2295
[58] Mao A J, Kuang X Y, Wan H and Huang X F 2008 J. Alloys Compd. 448 6
[59] Du M, Tang F, Long J, Ma C, Yuan X, Zhang J, Wen Z, Ma R and Cao Y 2016 Mater. Res. Bull. 83 316
[60] Lim J M, Kim D, Lim Y G, Park M S, Kim Y J, Cho M and Cho K 2015 J. Mater. Chem. A 3 7066
[61] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Cunter D Skinner D, Ceder C and Persson K A 2013 APL Mater. 1 011002
[62] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S 2017 Appl. Phys. A 123 96
[63] Du M H 2014 J. Mater. Chem. C 2 2475
[64] Yang Z Y, Rudowicz C and Qin J 2002 Phys. B 318 188
[65] Wu S Y, Wei W H and Dong H N 2003 Z. Naturforsch. A 58 672
[66] Tanabe Y and Sugano S 1954 J. Phys. Soc. Jpn. 9 766
[67] Arai T and Adachi S 2011 J. Appl. Phys. 110 063514
[68] Wang Z, Zhou Y, Yang Z, Liu Y, Yang H and Tan H 2015 Opt. Mater. 49 235
[69] Popov D Y, Kavun V Y, Gerasimenko A V, Sergienko V I and Antokhina T F 2002 J. Coord. Chem. 28 19
[70] Hasan Z and Manson N B 1980 J. Phys. C: Solid State Phys. 13 2325
[71] Zhou Q, Zhou Y, Liu Y, Wang Z, Chen G, Peng J, Yan J and Wu M 2015 J. Mater. Chem. C 3 9615
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!