|
|
Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13 |
Jun Luo(罗军)1,2, Jie Yang(杨杰)1, S Maeda3, Zheng Li(李政)1,2, Guo-Qing Zheng(郑国庆)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Okayama University, Okayama 700-8530, Japan |
|
|
Abstract The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x=0, 0.5, 1) and Ca3Rh4Sn13 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1) divided by temperature (T), 1/T1T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △=2.21 kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
|
Received: 09 April 2018
Revised: 02 May 2018
Accepted manuscript online:
|
PACS:
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
74.40.-n
|
(Fluctuation phenomena)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377 and 11634015), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). J. Y. is supported by the Youth Innovation Promotion Association of CAS. |
Corresponding Authors:
Jie Yang, Guo-Qing Zheng
E-mail: yangjie@iphy.ac.cn;gqzheng123@gmail.com
|
Cite this article:
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆) Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13 2018 Chin. Phys. B 27 077401
|
[1] |
Moncton D E, Axe J D and Disalvo F J 1977 Phys. Rev. B 16 801
|
[2] |
Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A and Sasaki T 2003 Nature 422 53
|
[3] |
Stewart G R 2011 Rev. Mod. Phys. 83 1589
|
[4] |
Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
|
[5] |
Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
|
[6] |
Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
|
[7] |
Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265
|
[8] |
Yang J, Zhou R, Wei, L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
|
[9] |
Kuo H H, Chu J H, Palmstrom J C, Kivelson S A and Fisher I R 2016 Science 352 958
|
[10] |
Lederer S, Schattner Y, Berg E and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905
|
[11] |
Remeika J P, Espinosa G P, Cooper A S, Barz H, Rowell J M, McWhan D B, Vandenberg J M, Moncton D E, Fisk Z, Woolf L D, Hamaker H C, Maple M B, Shirane G and Thomlinson W 1980 Solid State Commun. 34 923
|
[12] |
Kase N, Hayamizu H and Akimitsu J 2011 Phys. Rev. B 83 184509
|
[13] |
Espinosa G P 1980 Mater. Res. Bull. 15 791
|
[14] |
Espinosa G P, Cooper A S and Barz H 1982 Mater. Res. Bull. 17 963
|
[15] |
Yang J H, Chen B, Michioka C and Yoshimura K 2010 J. Phys. Soc. Jpn. 79 113705
|
[16] |
Zhou S Y, Zhang H, Hong X C, Pan B Y, Qiu X, Dong W N, Li X L and Li S Y 2012 Phys. Rev. B 86 064504
|
[17] |
Wang K F and Petrovic C 2012 Phys. Rev. B 86 024522
|
[18] |
Klintberg L E, Goh S K, Alireza P L, Saines P J, Tompsett D A, Logg P W, Yang J H, Chen B, Yoshimura K and Grosche F M 2012 Phys. Rev. Lett. 109 237008
|
[19] |
Goh S K, Tompsett D A, Saines P J, Chang H C, Matsumoto T, Imai M, Yoshimura K and Grosche F M 2015 Phys. Rev. Lett. 114 097002
|
[20] |
Yu W C, Cheung Y W, Saines P J, Imai M, Matsumoto T, Michioka C, Yoshimura K and Goh S K 2015 Phys. Rev. Lett. 115 207003
|
[21] |
Mazzone D G, Gerber S, Gavilano J L, Sibille R, Medarde M, Delley B, Ramakrishnan M, Neugebauer M, Regnault L P, Chernyshov D, Piovano A, Fernandez-Diaz T M, Keller L, Cervellino A, Pomjakushina E, Conder K and Kenzelmann M 2015 Phys. Rev. B 92 024101
|
[22] |
Lue C S, Kuo C N, Tseng C W, Wu K K, Liang Y H, Du C H and Kuo Y K 2016 Phys. Rev. B 93 245119
|
[23] |
Fang A F, Wang X B, Zheng P and Wang N L 2014 Phys. Rev. B 90 035115
|
[24] |
Kuo C N, Liu H F, Lue C S, Wang L M, Chen C C and Kuo Y K 2014 Phys. Rev. B 89 094520
|
[25] |
Chen B, Yang J, Guo Y and Yoshimura K 2015 Euro. Phys. Lett. 111 17005
|
[26] |
Tompsett D A 2014 Phys. Rev. B 89 075117
|
[27] |
Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
|
[28] |
Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T,Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382
|
[29] |
Zhou R, Xing L Y, Wang X C, Jin C Q and Zheng G Q 2016 Phys. Rev. B 93 060502(R)
|
[30] |
Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
|
[31] |
Kawasaki S, Tani Y, Mabuchi T, Kudo K, Nishikubo Y, Mitsuoka D, Nohara M and Zheng G Q 2015 Phys. Rev. B 91 060510(R)
|
[32] |
Li Z, Jiao W H, Cao G H and Zheng G Q 2016 Phys. Rev. B 94 174511
|
[33] |
Dahm T and Ueda K 2007 Phys. Rev. Lett. 99 187003
|
[34] |
Nakai Y, Ishida K, Sugawara H, Kikuchi D and Sato H 2008 Phys. Rev. B 77 041101(R)
|
[35] |
Toda M, Sugawara H, Magishi K, Saito T, Koyama K, Aoki Y and Sato H 2008 J. Phys. Soc. Jpn. 77 124702
|
[36] |
Hu Y J, Cheung Y W, Yu W C, Imai M, Kanagawa H, Murakawa J, Yushimura K and Goh S K 2017 Phys. Rev. B 95 155142
|
[37] |
Maeda S, Matano K, Yatagai R, Oguchi T and Zheng G Q 2015 Phys. Rev. B 91 174516
|
[38] |
Zheng G Q, Ozaki H, Kitaoka Y, Kuhns P, Reyes A P and Moulton W G 2002 Phys. Rev. Lett. 88 077003
|
[39] |
Kotegawa H, Yogi M, Imamura Y, Kawasaki Y, Zheng G Q, Kitaoka Y, Ohsaki S, Sugawara H, Aoki Y and Sato H 2003 Phys. Rev. Lett. 90 027001
|
[40] |
Sarkar R, Brueckner F, Guenther M, Wang K F, Petrovic C, Biswas P K, Luetkens H, Morenzoni E, Amato A and Klauss H H 2015 Physica B 479 51
|
[41] |
Gerber S, Gavilano J L, Medarde M, Pomjakushin V, Baines C, Pomjakushina E, Conder K and Kenzelmann M 2013 Phys. Rev. B 88 104505
|
[42] |
Biswas P K, Guguchia Z, Khasanov R, Chinotti M, Li L, Wang K F, Petrovic C and Morenzoni E 2015 Phys. Rev. B 92 195122
|
[43] |
Hou J, Wong C H, Lortz R, Sibille R and Kenzelmann M 2016 Phys. Rev. B 93 134505
|
[44] |
Kitaoka Y, Ohsugi S, Asayama K and Ohtani T 1992 Physica C 192 272
|
[45] |
Allen P B and Rainer D 1991 Nature 349 396
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|