Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058103    DOI: 10.1088/1674-1056/abd75c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces

Wenyu Li(李文宇)1,2, Guozhong Zhao(赵国忠)1,†, Tianhua Meng(孟田华)2, Ran Sun(孙然)1, and Jiaoyan Guo(郭姣艳)1
1 Department of Physics, Capital Normal University, Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048, China;
2 Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China
Abstract  The terahertz (THz) vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces. Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements, which possess different rotation angles and are arranged on two concentric rings centered on the origin. The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave, and the orbital angular momentum (OAM) varies in value by $l\hbar$. The $l$ values change from $\pm 1$ to $\pm 5$, and the maximal cross-polarization conversion efficiency that could be achieved is 23%, which nearly reaches the theoretical limit of a single-layer structure. The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz, and the generated THz vortex beam could keep a high fidelity in the operating bandwidth. The propagation behavior of the emerged THz vortex beam is analyzed in detail. Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators, which have low process complexity, high conversion efficiency and broad bandwidth.
Keywords:  metasurface      terahertz vortex beam      Pancharatnam-Berry phase element      conversion efficiency  
Received:  20 October 2020      Revised:  02 December 2020      Accepted manuscript online:  30 December 2020
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071312), the Important R&D Projects of Shanxi Province, China (Grant No. 201803D121083), and the Shanxi Scholarship Council (Grant No. 2020-135).
Corresponding Authors:  Guozhong Zhao     E-mail:  guozhong-zhao@cnu.edu.cn

Cite this article: 

Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳) High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces 2021 Chin. Phys. B 30 058103

[1] O'neil A T, Vicar I M, Allen L and Padgett M J 2002 Phys. Rev. Lett. 88 053601
[2] Simpson N B, Dholakia K, Allen L and Padgett M J 1997 Opt. Lett. 22 52
[3] Bouchard F, Leon I D, Schulz S A, Upham J, Karimi E and Boyd R W 2014 Appl. Phys. Lett. 105 101905
[4] Karimi E, Schulz S A, Leon I D, Qassim H, Upham J and Boyd R W 2014 Light: Sci. Appl. 3 167
[5] Guo Y H, Yan L S, Pan W and Luo B 2016 Plasmonics 11 337
[6] Ran Y Z, Liang J G, Cai T and Li H P 2018 Opt. Commun. 427 101
[7] Jin J J, Luo J, Zhang X H, Gao H, Pu M B, Gao P, Zhao Z Y and Luo X G 2016 Sci. Rep. 6 24286
[8] Ding F, Chen Y T and Bozhevolnyi S I 2020 Nanophotonics 9 371
[9] Chen M L, Jiang L J and Sha W 2018 Appl. Sci. 8 362
[10] Chen M L, Jiang L J and Sha W 2017 IEEE T Antenn. Propag. 65 396
[11] Yi A L, Yan L S, Pan Y, Jiang L, Chen Z Y, Pan W and Luo B 2018 Opt. Commun. 408 42
[12] Li X K, Li Y, Zeng X N and Han Y H 2018 J. Opt. 20 125604
[13] Li M M, Yan S H, Yao B L, Liang Y S and Zhang P 2016 Opt. Express 24 20604
[14] Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L and Li X 2015 IEEE Antennas and Wireless Propagation Letters 14 711
[15] Beijersbergen M W, Coerwinkel R P C, Kristensen M and Woerdman J P 1994 Opt. Commun. 112 321
[16] Li Y M, Kim J W and Escuti M J 2012 Appl. Opt. 51 8236
[17] Cheng L, Hong W and Hao Z C 2014 Sci. Rep. 4 4814
[18] Zhou L, Zhao G Z and Li X N 2019 Acta. Phys. Sin. 68 108701 (in Chinese)
[19] Wang W, Li Y, Guo Z Y, Li R Z, Zhang J R, Zhang A J and Qu S L 2015 J. Opt. 17 045102
[20] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[21] Wang W, Guo Z Y, Sun Y X, Shen F, Li Y, Liu Y, Wang X S and Qu S L 2015 Opt. Commun. 355 321
[22] He J W, Wang X K, Hu D, Ye J S, Feng S F, Kan Q and Zhang Y 2013 Opt. Express 21 020230
[23] Niv A, Gorodetski Y, Kleiner V and Hasman E 2008 Opt. Lett. 33 2910
[24] Tang S W, Li X K, Pan W K, Zhou J, Jiang T and Ding F 2019 Opt. Express 27 4281
[25] Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M and Zhu W R 2019 Adv. Optical Mater. 7 1801628
[26] Luo W J, Sun S L, Xu H X, He Q and Zhou L 2017 Phys. Rev. Applied 7 044033
[27] Li X N, Zhou L and Zhao G Z 2019 Acta. Phys. Sin. 68 238101 (in Chinese)
[28] Xu Y H, Li Q, Zhang X Q, Wei M G, Xu Q, Wang Q, Zhang H F, Zhang W T, Hu C, Zhang Z W, Zhang C L, Zhang X X, Han J G and Zhang W L 2019 ACS Photon. 6 2933
[29] Chaudhuri K, Shaltout A, Deesha S, Guler U, Dutta A, Shalaev V M and Boltasseva A 2019 ACS Photon. 6 99
[30] Yuan Y Y, Zhang K, Ratni B, Song Q H, Ding X M, Wu Q, Burokur S N and Genevet P 2020 Nat. Commun. 11 4186
[31] Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A D, Wu Q, Qiu C W and Alu A 2015 Adv. Mater. 27 1195
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[15] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
No Suggested Reading articles found!