Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077104    DOI: 10.1088/1674-1056/27/7/077104

The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations

Baokun Lu(路宝坤), Chongyu Wang(王崇愚)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (Al and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elastic moduli of γ-Ni. We used machine learning to theoretically predict the relationship between alloying concentration and mechanical properties, giving the binding energy between the two elements. We found that the ternary alloying elements strengthened the γ phase in the order of Re > Ir > W > Ru > Cr > Mo > Pt > Ta > Co. There is a quadratic parabolic relationship between the number of d shell electrons in the alloying element and the bulk modulus, and the maximum bulk modulus appears when the d shell is half full. We found a linear relationship between bulk modulus and alloying concentration over a certain alloying range. Using linear regression, we found the linear fit concentration coefficient of 29 elements. Using machine learning to theoretically predict the bulk modulus and lattice constants of Ni32XY, we predicted values close to the calculated results, with a regression parameter of R2=0.99626. Compared with pure Ni, the alloyed Ni has higher bulk modulus B, G, E, C11, and C44, but equal C12. The alloying strengthening in some of these systems is closely tied to the binding of elements, indicating that the binding energy of the alloy is a way to assess its elastic properties.
Keywords:  Ni-based single crystal superalloy      high-throughput calculations      first-principles calculations      elastic properties  
Received:  17 June 2018      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  81.05.Bx (Metals, semimetals, and alloys) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project support by the National Key R&D Program of China (Grant Nos. 2017YFB0701501, 2017YFB0701502, and 2017YFB0701503).
Corresponding Authors:  Chongyu Wang     E-mail:

Cite this article: 

Baokun Lu(路宝坤), Chongyu Wang(王崇愚) The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations 2018 Chin. Phys. B 27 077104

[1] Reed R C 2006 The Superalloys:Fundamentals and Applications (Cambridge:Cambridge University Press)
[2] Pugh S 1954 Philos. Mag. 45 823
[3] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[4] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[5] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[6] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[7] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[8] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[10] Voigt W 1928 Lehrbuch der kristallphysik:Teubner-Leipzig (New York:Macmillan)
[11] Reuss A and Angew Z 1929 Math. Mech. 9 55
[12] Hill R 1952 Proc. Phys. Soc. London 65 350
[13] Wang Y J and Wang C Y 2009 MRS Fall Meeting Symp. FF Proc.
[14] Wang Y J and Wang C Y 2009 Chin. Phy. B 18 4339
[15] Wang Y J and Wang C Y 2009 Phil. Mag. 89 2935
[16] Wu X X and Wang C Y 2015 J. Phys.:Condens. Matter 27 295401
[17] Shang S L, Wang Y, Kim D E and Liu Z K 2010 Comput. Mater. Sci. 47 1040
[18] Shang S L, Kim D E, Zacherl C L, Wang Y, Du Y and Liu Z K 2012 J. Appl. Phys. 112 053515
[19] Kim D E, Shang S L and Liu Z K 2012 Acta Mater. 60 1846
[20] Kim D E, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
[21] Bader R F 1990 Atoms in Molecules-A Quantum Theory (Oxford:Oxford University Press)
[22] Allred A L and Rochow E G 1958 J. Inorg. Nucl. Chem. 5 264
[23] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[24] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[25] Tian L Y, Hu Q M, Yang R, Zhao J J, Börje Johansson and Levente Vitos 2015 J. Phys.:Condens. Matter 27 315702
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!