Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074209    DOI: 10.1088/1674-1056/27/7/074209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entangling two oscillating mirrors in an optomechanical system via a flying atom

Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(SIPSE), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  We propose a novel scheme for generating the entanglement of two oscillating mirrors in an optomechanical system via a flying atom. In this scheme, a two-level atom, in an arbitrary superposition state, passes through an optomechanical system with two oscillating cavity-mirrors, and then its states are detected. In this way, we can generate the entangled states of the two oscillating mirrors. We derive the analytical expressions of the entangled states and make numerical calculations. We find that the entanglement of the two oscillating mirrors can be controlled by the initial state of the atom, the optomechanical coupling strength, and the coupling strength between the atom and the cavity field. We investigate the dynamics of the system with dissipations and discuss the experimental feasibility.
Keywords:  quantum entanglement      optomechanical system      dissipative dynamics  
Received:  03 March 2018      Revised:  29 March 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009) and the National Basic Research Program of China (Grant No. 2013CB921804).
Corresponding Authors:  Zhi-Ming Zhang     E-mail:  zhangzhiming@m.scnu.edu.cn

Cite this article: 

Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明) Entangling two oscillating mirrors in an optomechanical system via a flying atom 2018 Chin. Phys. B 27 074209

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] DiVincenzo D P 1995 Science 270 255
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
[6] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[7] Fuchs C A, Gisin N, Griffiths R B, Niu C S and Peres A 1997 Phys. Rev. A 56 1163
[8] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[9] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[10] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys. 84 777
[11] Hammerer K, Wallquist M, Genes C, Ludwig M, Marquardt F, Treutlein P, Zoller P, Ye J and Kimble H J 2009 Phys. Rev. Lett. 103 063005
[12] Wallquist M, Hammerer K, Zoller P, Genes C, Ludwig M, Marquardt F, Treutlein P, Ye J and Kimble H J 2010 Phys. Rev. A 81 023816
[13] Zhou L, Han Y, Jing J and Zhang W P 2011 Phys. Rev. A 83 052117
[14] Lu D M 2012 Acta Phys. Sin. 61 150303 (in Chinese)
[15] Liao Q H and Liu Y 2012 Acta Phys. Sin. 61 150301
[16] You J Q and Nori F 2011 Nature 474 589
[17] Flurin E, Roch N, Mallet F, Devoret M H and Huard B 2012 Phys. Rev. Lett. 109 183901
[18] Haner H, Hael W, Roos C F, Benhelm J, Chwalla M, Koer T and Gue O 2005 Nature 438 643
[19] Blatt R and Wineland D 2008 Nature 453 1008
[20] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[21] Wang H F and Zhang S 2009 Phys. Rev. A 79 042336
[22] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[23] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[24] Su S L, Shao X Q, Wang H F and Zhang S 2014 Phys. Rev. A 90 054302
[25] Turchette Q A, Wood C S, King B E, Myatt C J, Leibfried D, Itano W M, Monroe C and Wineland D J 1998 Phys. Rev. Lett. 81 3631
[26] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[27] Weis S, Rivière R, Delèglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[28] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[29] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
[30] Guo M D and Su X M 2017 Chin. Phys. B 26 074207
[31] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H L 2011 Phys. Rev. Lett. 107 133601
[32] Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 Phys. Rev. Lett. 101 263602
[33] Huang S M and Agarwal G S 2009 Phys. Rev. A 80 033807
[34] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[35] Ge W C and Zubairy M S 2015 Phys. Rev. A 91 013842
[36] Ian H, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. A 78 013824
[37] Jahne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
[38] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[39] Teufel J D, Donner T, Li D L, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[40] Cheng Y, Tan Z, Wang J, Zhu Y F and Zhan M S 2016 Chin. Phys. Lett. 33 014202
[41] Su J N, Deng W W and Li G X 2012 Acta Phys. Sin. 61 144210 (in Chinese)
[42] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[43] Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
[44] Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307
[45] Zhou L, Han Y, Jing J T and Zhang W P 2011 Phys. Rev. A 83 052117
[46] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[47] Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813
[48] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[49] James D F V and Jerke J 2007 Canadian Journal of Physics 85 625
[50] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[51] Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press)
[52] Nunnenkamp A, Borkje K and Girvin S M 2011 Phys. Rev. Lett. 107 063602
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[6] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[7] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[8] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[14] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!