ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Entangling two oscillating mirrors in an optomechanical system via a flying atom |
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明) |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(SIPSE), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We propose a novel scheme for generating the entanglement of two oscillating mirrors in an optomechanical system via a flying atom. In this scheme, a two-level atom, in an arbitrary superposition state, passes through an optomechanical system with two oscillating cavity-mirrors, and then its states are detected. In this way, we can generate the entangled states of the two oscillating mirrors. We derive the analytical expressions of the entangled states and make numerical calculations. We find that the entanglement of the two oscillating mirrors can be controlled by the initial state of the atom, the optomechanical coupling strength, and the coupling strength between the atom and the cavity field. We investigate the dynamics of the system with dissipations and discuss the experimental feasibility.
|
Received: 03 March 2018
Revised: 29 March 2018
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009) and the National Basic Research Program of China (Grant No. 2013CB921804). |
Corresponding Authors:
Zhi-Ming Zhang
E-mail: zhangzhiming@m.scnu.edu.cn
|
Cite this article:
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明) Entangling two oscillating mirrors in an optomechanical system via a flying atom 2018 Chin. Phys. B 27 074209
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
DiVincenzo D P 1995 Science 270 255
|
[3] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
|
[5] |
Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
|
[6] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[7] |
Fuchs C A, Gisin N, Griffiths R B, Niu C S and Peres A 1997 Phys. Rev. A 56 1163
|
[8] |
Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
|
[9] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[10] |
Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys. 84 777
|
[11] |
Hammerer K, Wallquist M, Genes C, Ludwig M, Marquardt F, Treutlein P, Zoller P, Ye J and Kimble H J 2009 Phys. Rev. Lett. 103 063005
|
[12] |
Wallquist M, Hammerer K, Zoller P, Genes C, Ludwig M, Marquardt F, Treutlein P, Ye J and Kimble H J 2010 Phys. Rev. A 81 023816
|
[13] |
Zhou L, Han Y, Jing J and Zhang W P 2011 Phys. Rev. A 83 052117
|
[14] |
Lu D M 2012 Acta Phys. Sin. 61 150303 (in Chinese)
|
[15] |
Liao Q H and Liu Y 2012 Acta Phys. Sin. 61 150301
|
[16] |
You J Q and Nori F 2011 Nature 474 589
|
[17] |
Flurin E, Roch N, Mallet F, Devoret M H and Huard B 2012 Phys. Rev. Lett. 109 183901
|
[18] |
Haner H, Hael W, Roos C F, Benhelm J, Chwalla M, Koer T and Gue O 2005 Nature 438 643
|
[19] |
Blatt R and Wineland D 2008 Nature 453 1008
|
[20] |
Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
|
[21] |
Wang H F and Zhang S 2009 Phys. Rev. A 79 042336
|
[22] |
Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
|
[23] |
Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
|
[24] |
Su S L, Shao X Q, Wang H F and Zhang S 2014 Phys. Rev. A 90 054302
|
[25] |
Turchette Q A, Wood C S, King B E, Myatt C J, Leibfried D, Itano W M, Monroe C and Wineland D J 1998 Phys. Rev. Lett. 81 3631
|
[26] |
Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
|
[27] |
Weis S, Rivière R, Delèglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
|
[28] |
Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
|
[29] |
Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
|
[30] |
Guo M D and Su X M 2017 Chin. Phys. B 26 074207
|
[31] |
Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H L 2011 Phys. Rev. Lett. 107 133601
|
[32] |
Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 Phys. Rev. Lett. 101 263602
|
[33] |
Huang S M and Agarwal G S 2009 Phys. Rev. A 80 033807
|
[34] |
Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
|
[35] |
Ge W C and Zubairy M S 2015 Phys. Rev. A 91 013842
|
[36] |
Ian H, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. A 78 013824
|
[37] |
Jahne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
|
[38] |
Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
|
[39] |
Teufel J D, Donner T, Li D L, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
|
[40] |
Cheng Y, Tan Z, Wang J, Zhu Y F and Zhan M S 2016 Chin. Phys. Lett. 33 014202
|
[41] |
Su J N, Deng W W and Li G X 2012 Acta Phys. Sin. 61 144210 (in Chinese)
|
[42] |
Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
|
[43] |
Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
|
[44] |
Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307
|
[45] |
Zhou L, Han Y, Jing J T and Zhang W P 2011 Phys. Rev. A 83 052117
|
[46] |
Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
|
[47] |
Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813
|
[48] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[49] |
James D F V and Jerke J 2007 Canadian Journal of Physics 85 625
|
[50] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[51] |
Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press)
|
[52] |
Nunnenkamp A, Borkje K and Girvin S M 2011 Phys. Rev. Lett. 107 063602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|