Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence |
Bao-Min Li(李保民)1,2, Ming-Liang Hu(胡明亮)1, and Heng Fan(范桁)1,2,3,† |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate the nonlocal advantage of quantum coherence (NAQC) and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence. Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained, based on which we calculate the NAQC and entanglement. In the weak region of magnetic field, the NAQC behaves as a damped oscillation with the time evolves, while the entanglement decays exponentially (behaves as a damped oscillation) for the spin-1/2 (spin-1) case. Moreover, the decay of both the NAQC and entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some decoherence-rate-determined optimal values.
|
Received: 18 March 2021
Revised: 14 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Pq
|
(Spin chain models)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774406 and 11934018), the National Key Research and Develepment Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G07). |
Corresponding Authors:
Heng Fan
E-mail: hfan@iphy.ac.cn
|
Cite this article:
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁) Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence 2021 Chin. Phys. B 30 070307
|
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Modi K, Brodutch A, Cable H, Paterek Z and Vedral V 2012 Rev. Mod. Phys. 84 1655 [3] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003 [4] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762–764 1 [5] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [6] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [7] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 [8] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [9] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124 [10] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 [11] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405 [12] Yu C S 2017 Phys. Rev. A 95 042337 [13] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 [14] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 [15] Hillery M 2016 Phys. Rev. A 93 012111 [16] Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 [17] Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A 53 085301 [18] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118 [19] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 [20] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 [21] Hu M L and Fan H 2017 Phys. Rev. A 95 052106 [22] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 [23] Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598 [24] Hu M and Zhou W 2019 Laser Phys. Lett. 16 045201 [25] Liu X B, Tian Z H, Wang J C and Jing J L 2016 Ann. Phys. (N.Y.) 366 102 [26] Guarnieri G, Kolář M and Filip R 2018 Phys. Rev. Lett. 121 070401 [27] Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322 [28] Hu M L and Fan H 2016 Sci. Rep. 6 29260 [29] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 [30] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303 [31] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602 [32] Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402 [33] Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326 [34] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331 [35] Zanardi P, Styliaris G and Campos Venuti L 2017 Phys. Rev. A 95 052306 [36] Bu K, Kumar A, Zhang L and Wu J 2017 Phys. Lett. A 381 1670 [37] Misra A, Singh U, Bhattacharya S and Pati A K 2016 Phys. Rev. A 93 052335 [38] Milburn G J 1991 Phys. Rev. A 44 5401 [39] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301 [40] Hu M L and Fan H 2018 Phys. Rev. A 98 022312 [41] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317 [42] Datta S and Majumdar A S 2018 Phys. Rev. A 98 042311 [43] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305 [44] Xie Y X and Qin Z Y 2020 Quantum Inf. Process. 19 375 [45] Xue G H and Qiu L 2020 Phys. Scr. 95 025101 [46] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308 [47] Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308 [48] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [49] Hu M L and Lian H L 2009 Eur. Phys. J. D 55 711 [50] Liu B Q, Shao B and Zou J 2010 Phys. Lett. A 374 1970 [51] Fan K M and Zhang G F 2014 Eur. Phys. J. D 68 163 [52] Liao Y Y, Jian S R and Lee J R 2019 Eur. Phys. J. D 73 47 [53] Mohamed A B A and Metwally N 2017 Ann. Phys. (N.Y.) 381 137 [54] Guo Y N, Fang M F and Zeng K 2018 Quantum Inf. Process. 17 187 [55] Zhang Z Y, Wei D X and Liu J M 2018 Laser Phys. Lett. 15 065207 [56] Hu M L 2010 Eur. Phys. J. D 59 497 [57] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 045202 [58] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 075201 [59] Xie Y X and Zhang Y H 2020 Laser Phys. Lett. 17 035206 [60] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [61] Hu M L and Fan H 2012 Phys. Rev. A 86 032338 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|