Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034209    DOI: 10.1088/1674-1056/abc7a4

Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system

Rui-Jie Xiao(肖瑞杰)1,†, Gui-Xia Pan(潘桂侠)2, and Xiao-Ming Xiu(修晓明)1
1 College of Physical Science and Technology, Bohai University, Jinzhou 121013, China; 2 School of Science, Anhui University of Science and Technology, Huainan 232001, China
Abstract  We theoretically investigate a two-cavity optomechanical system in which each optical cavity couples to a mechanical resonator via radiation pressure force, and the two optical cavities couple to each other via a distant waveguide. Our study shows that the multiple optomechanically induced transparency can be observed from the output field at the probe frequency. The number and width of the transparent windows can be tuned by the classical driving power Pl. We also analyze the distance of the two outermost transparency windows, which shows a linear relation with the parameters Pl and Λ. Our approach is feasible for controlling multipartite induced transparency, which represents a valuable step towards quantum networks with photonic and phononic circuits.
Keywords:  optomechanical system      optomechanically induced transparency      optical mode  
Received:  07 June 2020      Revised:  20 September 2020      Accepted manuscript online:  05 November 2020
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.15.Eq (Optical system design)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704042 and 11674037) and the LiaoNing Revitalization Talents Program (Grant No. XLYC1807206).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明) Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system 2021 Chin. Phys. B 30 034209

1 Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
2 Marquardt F and Girvin S M 2009 Physics 2 40
3 Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X and Zhang J 2019 Phys. Rev. A 99 063810
4 Zhang F Y, Li W L, Yan W B and Xia Y 2019 J. Phys. B: At. Mol. Opt. Phys. 52 115501
5 Cheng J, Zhang W Z, Han Y and Zhou L 2016 Sci. Rep. 6 23678
6 Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
7 He Y 2015 Phys. Rev. A 91 013827
8 Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 17979
9 Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
10 Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J and Sillanpaa M A 2011 Nature 480 351
11 Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D and Painter O 2011 Nature 472 69
12 Akram M J, Khan M M and Saif F 2015 Phys. Rev. A 92 023846
13 Sarma B and Sarma A K 2016 J. Opt. Soc. Am. B 33 1335
14 Reinhardt C, M\"uller T, Bourassa A and Sankey J C 2016 Phys. Rev. X 6 021001
15 Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A 99 063811
16 Jing H, Ozdemir S K, L\"u X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604
17 Sarma B and Sarma A K 2018 Phys. Rev. A 98 013826
18 Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
19 Abramovici A, Althouse W E, Drever R W P, G\"ursel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, Vogt R E, Weiss R, Whitcomb S E and Zucker M E 1992 Science 256 325
20 Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
21 Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815
22 Weis S, Rivi\`ere R, Del\'eglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
23 Chang D, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J. Phys. 13 023003
24 Lu T X, Jiao Y F, Zhang H L, Saif F and Jing H 2019 Phys. Rev. A 100 013813
25 Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
26 Agarwal G S and Huang S M 2012 Phys. Rev. A 85 021801
27 Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
28 Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813
29 Wu S C, Qin L G, Jing J, Yan T M, Lu J and Wang Z Y 2018 Phys. Rev. A 98 013807
30 Jing S 2011 Chin. Phys. Lett. 28 104203
31 Gu W J and Yi Z 2014 Opt. Commun. 333 261
32 Huang S M and Tsang M arXiv: 1403.1340v1
33 Xiao R J, Pan G X and Zhou L 2015 J. Opt. Soc. Am. B 32 1399
34 Hao H, Kuzyk M C, Ren J J, Zhang F, Duan X K, Zhou L, Zhang T C, Gong Q H, Wang H L and Gu Y 2019 Phys. Rev. A 100 023820
35 Wu S C, QIN L G, Jing J, Yang G H and Wang Z Y 2016 Chin. Phys. B 25 054203
36 Hessa M, Alotaibi M and Sanders B C 2014 Phys. Rev. A 89 021802
37 Wu S C, QIN L G, Lu J and Wang Z Y 2019 Chin. Phys. B 28 074204
38 Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832
39 Xu X W, Liu Y, Sun C P and Li Y 2015 Phys. Rev. A 92 013852
40 Karabalin R B, Cross M C and Roukes M L 2009 Phys. Rev. B 79 165309
41 Huang P, Wang P F, Zhou J W, Wang Z X, Ju C Y, Wang Z M, Shen Y, Duan C K and Du J F 2013 Phys. Rev. Lett. 110 227202
42 Barzanjeh S and Vitali D 2016 Phys. Rev. A 93 033846
43 Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
44 Sohail A, Zhang Y, Zhang J and Yu C S 2016 Sc. Rep. 6 28830
45 Ma J L, Tan L, Li Q, Gu H Q and Liu W M 2018 Sci. Rep. 8 14367
46 Li T, Bao T Y, Zhang Y L, Zou C L, Zou X B and Guo G C 2016 Opt. Express 24 12336
47 Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
48 Tan H, Buchmann L F, Seok H and Li G 2013 Phys. Rev. A 87 022318
49 Walls D F and Milburn G J1994 Quantum Optics(Berlin: Springer-Verlag)
50 Agarwal G S and Huang S M 2010 Phys. Rev. A 81 041803
51 Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[4] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[5] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[6] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[7] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[8] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[12] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[13] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[14] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[15] Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jian Lu(鹿建), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2019, 28(7): 074204.
No Suggested Reading articles found!