Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014202    DOI: 10.1088/1674-1056/ac7206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors

Heng-Mei Li(李恒梅)1,†, Bao-Hua Yang(杨保华)1, Hong-Chun Yuan(袁洪春)2, and Ye-Jun Xu(许业军)3
1 School of Information Engineering, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, China;
2 School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China;
3 School of Mechanical and Electronic Engineering, Chizhou University, Chizhou 247000, China
Abstract  A scheme is proposed to investigate the non-classical states generated by a quantum scissors device (QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters (BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t=2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function (WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t=2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.
Keywords:  optomechanical system      quantum scissors device      quantum state engineering      linear entropy  
Received:  22 March 2022      Revised:  04 May 2022      Accepted manuscript online:  23 May 2022
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704051), the Qinglan Project of the Jiangsu Education Department and the Research Foundation of Six Talents Peaks Project in Jiangsu Province, China (Grant No. XNY-093).
Corresponding Authors:  Heng-Mei Li     E-mail:  lihengm@ustc.edu.cn

Cite this article: 

Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军) Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors 2023 Chin. Phys. B 32 014202

[1] Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
[2] Blatt R, Milburn G J and Lvovsky A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 100201
[3] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
[4] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[5] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[6] Wang X B, Kwek L C, Liu Y and Oh C H 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1059
[7] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844
[8] Hu L Y and Zhang Z M 2013 J. Opt. Soc. Am. B 30 518
[9] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
[10] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
[11] Xu X X, Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2623
[12] Lee S Y, Park J, Ji S W, Raymond Ooi C H and Lee H W 2009 J. Opt. Soc. Am. B 26 1532
[13] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[14] Li H M, Xu X X, Yuan H C, Wang Z, Wan Z L and Xu X F 2015 Opt. Commun. 354 291
[15] Navarrete-Benlloch C, García-Patrón R, Shapiro J H and Cerf N J 2012 Phys. Rev. A 86 012328
[16] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
[17] Yang Y and Li F L 2009 Phys. Rev. A 80 022315
[18] Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
[19] Ouyang Y, Wang S and Zhang L J 2016 J. Opt. Soc. Am. B 33 1373
[20] Pegg D T, Phillips L S and Barnett S M 1998 Phys. Rev. Lett. 81 1604
[21] Ozdemir S K, Miranowicz A, Koashi M and Imoto N 2001 Phys. Rev. A 64 063818
[22] Miranowicz A, Ozdemir S K, Bajer J, Koashi M and Imoto N 2007 J. Opt. Soc. Am. B 24 379
[23] Miranowicz A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 142
[24] Seshadreesan K P, Krovi H and Guha S 2019 Phys. Rev. A 100 022315
[25] Wang M H and Yan G A 2019 Chin. Phys. B 28 030302
[26] Ren G, Yu H J, Zhang C Z and Zhang W H 2021 Phys. Scr. 96 095103
[27] Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R and Grangier P 2010 Phys. Rev. Lett. 104 123603
[28] Babichew S A, Ries J and Lvovsky A I 2003 Europhys. Lett. 64 1
[29] Koniorczyk M, Kurucz Z, Gábris A and Janszky J 2000 Phys. Rev. A 62 013802
[30] Zhao H X, Xu X X and Yuan H C 2017 Opt. Commun. 382 127
[31] Xu X X, Hu L Y and Liao Z Y 2018 J. Opt. Soc. Am. B 35 174
[32] Zhang K Z, Hu L Y, Ye W, Liu C J and Xu X X 2019 Laser Phys. Lett. 16 015204
[33] Liu C J, Yu M, Ye W, Zhang H and Hu L Y 2020 Results Phys. 19 103616
[34] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Top. Quantum Electron. 26 6400212
[35] Li H M, Xu X X, Huang H Y, Wang Z, Wan Z L and Yuan H C 2020 J. Opt. Soc. Am. B 37 1054
[36] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[37] Liao J Q and Tian L 2016 Phys. Rev. Lett. 116 163602
[38] Sekatski P, Aspelmeyer M and Sangouard N 2014 Phys. Rev. Lett. 112 080502
[39] Jiang L Y, Guo Q, Xu X X, Cai M, Yuan W and Duan Z L 2016 Opt. Commun. 369 179
[40] Liang X Y, Guo Q and Yuan W 2019 Int. J. Theor. Phys. 58 58
[41] Mancini S, Man'ko V I and Tombesi P 1997 Phys. Rev. A 55 3042
[42] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[43] Yang T L, Zhu C L, Liu S and Xu Y J 2021 Chin. Phys. B 30 124201
[44] Shi H and Bhattacharya M 2013 Phys. Rev. A 87 043829
[45] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[46] Zurek W H, Habib S and Paz J P 1993 Phys. Rev. Lett. 70 1187
[47] Kenfack A and Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[48] Tan K C, Choi S C and Jeong H 2020 Phys. Rev. Lett. 124 110404
[49] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[50] Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[12] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[13] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[14] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[15] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
No Suggested Reading articles found!