ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors |
Heng-Mei Li(李恒梅)1,†, Bao-Hua Yang(杨保华)1, Hong-Chun Yuan(袁洪春)2, and Ye-Jun Xu(许业军)3 |
1 School of Information Engineering, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, China; 2 School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China; 3 School of Mechanical and Electronic Engineering, Chizhou University, Chizhou 247000, China |
|
|
Abstract A scheme is proposed to investigate the non-classical states generated by a quantum scissors device (QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters (BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t=2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function (WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t=2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.
|
Received: 22 March 2022
Revised: 04 May 2022
Accepted manuscript online: 23 May 2022
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704051), the Qinglan Project of the Jiangsu Education Department and the Research Foundation of Six Talents Peaks Project in Jiangsu Province, China (Grant No. XNY-093). |
Corresponding Authors:
Heng-Mei Li
E-mail: lihengm@ustc.edu.cn
|
Cite this article:
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军) Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors 2023 Chin. Phys. B 32 014202
|
[1] Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53 [2] Blatt R, Milburn G J and Lvovsky A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 100201 [3] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001 [4] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492 [5] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106 [6] Wang X B, Kwek L C, Liu Y and Oh C H 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1059 [7] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844 [8] Hu L Y and Zhang Z M 2013 J. Opt. Soc. Am. B 30 518 [9] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104 [10] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141 [11] Xu X X, Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2623 [12] Lee S Y, Park J, Ji S W, Raymond Ooi C H and Lee H W 2009 J. Opt. Soc. Am. B 26 1532 [13] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812 [14] Li H M, Xu X X, Yuan H C, Wang Z, Wan Z L and Xu X F 2015 Opt. Commun. 354 291 [15] Navarrete-Benlloch C, García-Patrón R, Shapiro J H and Cerf N J 2012 Phys. Rev. A 86 012328 [16] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302 [17] Yang Y and Li F L 2009 Phys. Rev. A 80 022315 [18] Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304 [19] Ouyang Y, Wang S and Zhang L J 2016 J. Opt. Soc. Am. B 33 1373 [20] Pegg D T, Phillips L S and Barnett S M 1998 Phys. Rev. Lett. 81 1604 [21] Ozdemir S K, Miranowicz A, Koashi M and Imoto N 2001 Phys. Rev. A 64 063818 [22] Miranowicz A, Ozdemir S K, Bajer J, Koashi M and Imoto N 2007 J. Opt. Soc. Am. B 24 379 [23] Miranowicz A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 142 [24] Seshadreesan K P, Krovi H and Guha S 2019 Phys. Rev. A 100 022315 [25] Wang M H and Yan G A 2019 Chin. Phys. B 28 030302 [26] Ren G, Yu H J, Zhang C Z and Zhang W H 2021 Phys. Scr. 96 095103 [27] Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R and Grangier P 2010 Phys. Rev. Lett. 104 123603 [28] Babichew S A, Ries J and Lvovsky A I 2003 Europhys. Lett. 64 1 [29] Koniorczyk M, Kurucz Z, Gábris A and Janszky J 2000 Phys. Rev. A 62 013802 [30] Zhao H X, Xu X X and Yuan H C 2017 Opt. Commun. 382 127 [31] Xu X X, Hu L Y and Liao Z Y 2018 J. Opt. Soc. Am. B 35 174 [32] Zhang K Z, Hu L Y, Ye W, Liu C J and Xu X X 2019 Laser Phys. Lett. 16 015204 [33] Liu C J, Yu M, Ye W, Zhang H and Hu L Y 2020 Results Phys. 19 103616 [34] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Top. Quantum Electron. 26 6400212 [35] Li H M, Xu X X, Huang H Y, Wang Z, Wan Z L and Yuan H C 2020 J. Opt. Soc. Am. B 37 1054 [36] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [37] Liao J Q and Tian L 2016 Phys. Rev. Lett. 116 163602 [38] Sekatski P, Aspelmeyer M and Sangouard N 2014 Phys. Rev. Lett. 112 080502 [39] Jiang L Y, Guo Q, Xu X X, Cai M, Yuan W and Duan Z L 2016 Opt. Commun. 369 179 [40] Liang X Y, Guo Q and Yuan W 2019 Int. J. Theor. Phys. 58 58 [41] Mancini S, Man'ko V I and Tombesi P 1997 Phys. Rev. A 55 3042 [42] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175 [43] Yang T L, Zhu C L, Liu S and Xu Y J 2021 Chin. Phys. B 30 124201 [44] Shi H and Bhattacharya M 2013 Phys. Rev. A 87 043829 [45] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842 [46] Zurek W H, Habib S and Paz J P 1993 Phys. Rev. Lett. 70 1187 [47] Kenfack A and Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396 [48] Tan K C, Choi S C and Jeong H 2020 Phys. Rev. Lett. 124 110404 [49] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147 [50] Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|