Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090301    DOI: 10.1088/1674-1056/abeef4
GENERAL Prev   Next  

Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots

M Bagheri Harouni
Quantum Optics Group, Department of Physics, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran
Abstract  Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin-orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin-orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.
Keywords:  quantum speed limit time      quantum entanglement      open quantum systems      spin-orbit effects  
Received:  07 October 2020      Revised:  08 February 2021      Accepted manuscript online:  16 March 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  75.70.Tj (Spin-orbit effects)  
Corresponding Authors:  M Bagheri Harouni     E-mail:  m-bagheri@phys.ui.ac.ir

Cite this article: 

M Bagheri Harouni Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots 2021 Chin. Phys. B 30 090301

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Lloyd S 2000 Nature 406 1047
[3] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovennetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[4] Mandelstam L and Tamm I 1991 The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. In: Bolotovskii B M, Frenkel V Y and Peierls R (eds) Selected Papers (Berlin: Springer) pp. 115-123
[5] Bhattachanya K 1983 J. Phys. A: Math. Gen. 16 2993
[6] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[7] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[8] Margolus N and Levitin L B 1998 Physica D 120 188
[9] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[10] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[11] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[12] Marvian I and Lidar D A 2015 Phys. Rev. Lett. 115 210402
[13] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[14] Pires D P, Cianciaruso M, Celeri L C, Adesso G and Soares-Pinto D O 2016 Phys. Rev. X 6 021031
[15] Frey M R 2016 Quantum Inf. Process. 15 3919
[16] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[17] Mondal D, Datta Ch, Sazim S 2016 Phys. Lett. A 380 689
[18] Sun Zh, Liu J, Ma J, Wang X 2015 Sci. Rep. 5 8444
[19] Ektesabi A, Behzadi N and Faizi E 2017 Phys. Rev. A 95 022115
[20] Liu Ch, Xu Zh Y and Zhu Sh 2015 Phys. Rev. A 91 022102
[21] Hou L, Shao B, Wei Y B and Zou J 2015 J. Phys. A: Math. Theor. 48 495302
[22] Brouzos I, Streltsov A I, Negretti A, Said R S, Caneva T, Montangero S and Calarco T 2015 Phys. Rev. A 92 062110
[23] Wei Y B, Zou J, Wang Zh M and Shao B 2016 Sci. Rep. 6 19308
[24] Hou L, Shaoa B, Wei Y and Zou J 2017 Eur. Phys. J. D 71 22
[25] Xu Z Y and Zhu S Q 2014 Chin. Phys. Lett. 31 020301
[26] Murphy M, Montangero S, Giovannetti V and Calarco T 2010 Phys. Rev. A 82 022318
[27] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
[28] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[29] Burkard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[30] Imamoglu A, Awschalon D D, Burkard G, Divincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[31] Kornich V, Kloeffel C and Loss D 2014 Phys. Rev. B 89 085410
[32] Kloeffel C and Loss D 2013 Annu. Rev. Condens. Matter Phys. 4 51
[33] Jaeger G 2009 Entanglement, Information and the Interpretation of Quantum Mechanics (Springer)
[34] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[35] Ekert A K 1991 Phys. Rev. Lett. 67 661
[36] Bollinger J J, Itano W M, Wineland D J and Heizen D 1996 Phys. Rev. A 54 R4649
[37] Lu C Y, Gao W B, Guhne O, Zhou X Q, Chen Z B and Pan J W 2009 Phys. Rev. Lett. 102 030502
[38] Hiram E Ch 2011 Spin-Orbit: Interaction (International Book Market Service Limited)
[39] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Scince 309 2180
[40] Pfund A, Shorubalko I, Ensslin K and Leturcq R 2007 Phys. Rev. B 76 161308
[41] van der Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M and Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806
[42] Nadj-Perge S, Florov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084
[43] Kheirandish F, Akhtarshenas S J and Mohammadi H 2008 Phys. Rev. A 77 042309
[44] Dzyaloshinski I 1958 J. Phys. Chem. Solids 4 241
[45] Moria T 1960 Phys. Rev. Lett. 4 228
[46] Yin Sh, Song J and Liu Sh 2019 Phys. Lett. A 383 136
[47] Bagheri Harouni M 2020 Chin. Phys. B 29 124203
[48] Breuer H P and Petroccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[49] Chirolli L and Burkard G 2008 Adv. Phys. 57 225
[50] Harsij Z, Bagheri Harouni M, Roknizadeh R and Naderi M H 2012 Phys. Rev. A 86 063803
[51] de Vega I, Alonso D, Gaspard P and Strunz W T 2005 J. Chem. Phys. 122 124106
[52] Weiss U 1999 Quantum Dissipative Systems 2nd edn (Singapore: World Scientific)
[53] Bagheri Harouni M, Roknizadeh R and Naderi M H 2009 Phys. Rev. B 79 165304
[54] Zhang Y, Han W, Xia Y, Cao J and Fan H 2014 Sci. Rep. 4 4890
[55] Bures D J C 1969 Trans. Am. Math. Soc. 135 199
[56] Bhatia R 1997 Matrix Analysis (Berlin: Springer)
[57] Ricardo 2014 A Modern Introduction to Linear Algebra (New York: CRC Press)
[58] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[59] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[7] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[8] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!