|
|
Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots |
M Bagheri Harouni† |
Quantum Optics Group, Department of Physics, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran |
|
|
Abstract Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin-orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin-orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.
|
Received: 07 October 2020
Revised: 08 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
Corresponding Authors:
M Bagheri Harouni
E-mail: m-bagheri@phys.ui.ac.ir
|
Cite this article:
M Bagheri Harouni Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots 2021 Chin. Phys. B 30 090301
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Lloyd S 2000 Nature 406 1047 [3] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovennetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501 [4] Mandelstam L and Tamm I 1991 The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. In: Bolotovskii B M, Frenkel V Y and Peierls R (eds) Selected Papers (Berlin: Springer) pp. 115-123 [5] Bhattachanya K 1983 J. Phys. A: Math. Gen. 16 2993 [6] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697 [7] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502 [8] Margolus N and Levitin L B 1998 Physica D 120 188 [9] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403 [10] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402 [11] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402 [12] Marvian I and Lidar D A 2015 Phys. Rev. Lett. 115 210402 [13] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331 [14] Pires D P, Cianciaruso M, Celeri L C, Adesso G and Soares-Pinto D O 2016 Phys. Rev. X 6 021031 [15] Frey M R 2016 Quantum Inf. Process. 15 3919 [16] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001 [17] Mondal D, Datta Ch, Sazim S 2016 Phys. Lett. A 380 689 [18] Sun Zh, Liu J, Ma J, Wang X 2015 Sci. Rep. 5 8444 [19] Ektesabi A, Behzadi N and Faizi E 2017 Phys. Rev. A 95 022115 [20] Liu Ch, Xu Zh Y and Zhu Sh 2015 Phys. Rev. A 91 022102 [21] Hou L, Shao B, Wei Y B and Zou J 2015 J. Phys. A: Math. Theor. 48 495302 [22] Brouzos I, Streltsov A I, Negretti A, Said R S, Caneva T, Montangero S and Calarco T 2015 Phys. Rev. A 92 062110 [23] Wei Y B, Zou J, Wang Zh M and Shao B 2016 Sci. Rep. 6 19308 [24] Hou L, Shaoa B, Wei Y and Zou J 2017 Eur. Phys. J. D 71 22 [25] Xu Z Y and Zhu S Q 2014 Chin. Phys. Lett. 31 020301 [26] Murphy M, Montangero S, Giovannetti V and Calarco T 2010 Phys. Rev. A 82 022318 [27] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457 [28] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120 [29] Burkard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070 [30] Imamoglu A, Awschalon D D, Burkard G, Divincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204 [31] Kornich V, Kloeffel C and Loss D 2014 Phys. Rev. B 89 085410 [32] Kloeffel C and Loss D 2013 Annu. Rev. Condens. Matter Phys. 4 51 [33] Jaeger G 2009 Entanglement, Information and the Interpretation of Quantum Mechanics (Springer) [34] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706 [35] Ekert A K 1991 Phys. Rev. Lett. 67 661 [36] Bollinger J J, Itano W M, Wineland D J and Heizen D 1996 Phys. Rev. A 54 R4649 [37] Lu C Y, Gao W B, Guhne O, Zhou X Q, Chen Z B and Pan J W 2009 Phys. Rev. Lett. 102 030502 [38] Hiram E Ch 2011 Spin-Orbit: Interaction (International Book Market Service Limited) [39] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Scince 309 2180 [40] Pfund A, Shorubalko I, Ensslin K and Leturcq R 2007 Phys. Rev. B 76 161308 [41] van der Berg J W G, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P A M, Frolov S M and Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806 [42] Nadj-Perge S, Florov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084 [43] Kheirandish F, Akhtarshenas S J and Mohammadi H 2008 Phys. Rev. A 77 042309 [44] Dzyaloshinski I 1958 J. Phys. Chem. Solids 4 241 [45] Moria T 1960 Phys. Rev. Lett. 4 228 [46] Yin Sh, Song J and Liu Sh 2019 Phys. Lett. A 383 136 [47] Bagheri Harouni M 2020 Chin. Phys. B 29 124203 [48] Breuer H P and Petroccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) [49] Chirolli L and Burkard G 2008 Adv. Phys. 57 225 [50] Harsij Z, Bagheri Harouni M, Roknizadeh R and Naderi M H 2012 Phys. Rev. A 86 063803 [51] de Vega I, Alonso D, Gaspard P and Strunz W T 2005 J. Chem. Phys. 122 124106 [52] Weiss U 1999 Quantum Dissipative Systems 2nd edn (Singapore: World Scientific) [53] Bagheri Harouni M, Roknizadeh R and Naderi M H 2009 Phys. Rev. B 79 165304 [54] Zhang Y, Han W, Xia Y, Cao J and Fan H 2014 Sci. Rep. 4 4890 [55] Bures D J C 1969 Trans. Am. Math. Soc. 135 199 [56] Bhatia R 1997 Matrix Analysis (Berlin: Springer) [57] Ricardo 2014 A Modern Introduction to Linear Algebra (New York: CRC Press) [58] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [59] Wootters W K 1998 Phys. Rev. Lett. 80 2245 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|